![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > df-sn | Structured version Visualization version GIF version |
Description: Define the singleton of a class. Definition 7.1 of [Quine] p. 48. For convenience, it is well-defined for proper classes, i.e., those that are not elements of V, although it is not very meaningful in this case. For an alternate definition see dfsn2 4223. (Contributed by NM, 21-Jun-1993.) |
Ref | Expression |
---|---|
df-sn | ⊢ {𝐴} = {𝑥 ∣ 𝑥 = 𝐴} |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cA | . . 3 class 𝐴 | |
2 | 1 | csn 4210 | . 2 class {𝐴} |
3 | vx | . . . . 5 setvar 𝑥 | |
4 | 3 | cv 1522 | . . . 4 class 𝑥 |
5 | 4, 1 | wceq 1523 | . . 3 wff 𝑥 = 𝐴 |
6 | 5, 3 | cab 2637 | . 2 class {𝑥 ∣ 𝑥 = 𝐴} |
7 | 2, 6 | wceq 1523 | 1 wff {𝐴} = {𝑥 ∣ 𝑥 = 𝐴} |
Colors of variables: wff setvar class |
This definition is referenced by: sneq 4220 elsng 4224 rabeqsn 4246 rabsssn 4247 csbsng 4275 rabsn 4288 pw0 4375 iunid 4607 dfiota2 5890 uniabio 5899 dfimafn2 6285 fnsnfv 6297 suppvalbr 7344 snec 7853 infmap2 9078 cf0 9111 cflecard 9113 brdom7disj 9391 brdom6disj 9392 vdwlem6 15737 hashbc0 15756 symgbas0 17860 psrbagsn 19543 ptcmplem2 21904 snclseqg 21966 nmoo0 27774 nmop0 28973 nmfn0 28974 disjabrex 29521 disjabrexf 29522 pstmfval 30067 hasheuni 30275 derang0 31277 dfiota3 32155 bj-nuliotaALT 33145 poimirlem28 33567 lineset 35342 frege54cor1c 38526 iotain 38935 csbsngVD 39443 dfaimafn2 41567 rnfdmpr 41623 |
Copyright terms: Public domain | W3C validator |