Users' Mathboxes Mathbox for BJ < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  bj-rabtr Structured version   Visualization version   GIF version

Theorem bj-rabtr 32608
Description: Restricted class abstraction with true formula. (Contributed by BJ, 22-Apr-2019.)
Assertion
Ref Expression
bj-rabtr {𝑥𝐴 ∣ ⊤} = 𝐴
Distinct variable group:   𝑥,𝐴

Proof of Theorem bj-rabtr
StepHypRef Expression
1 ssrab2 3671 . 2 {𝑥𝐴 ∣ ⊤} ⊆ 𝐴
2 ssid 3608 . . 3 𝐴𝐴
3 tru 1484 . . . 4
43rgenw 2919 . . 3 𝑥𝐴
5 ssrab 3664 . . 3 (𝐴 ⊆ {𝑥𝐴 ∣ ⊤} ↔ (𝐴𝐴 ∧ ∀𝑥𝐴 ⊤))
62, 4, 5mpbir2an 954 . 2 𝐴 ⊆ {𝑥𝐴 ∣ ⊤}
71, 6eqssi 3603 1 {𝑥𝐴 ∣ ⊤} = 𝐴
Colors of variables: wff setvar class
Syntax hints:   = wceq 1480  wtru 1481  wral 2907  {crab 2911  wss 3559
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1719  ax-4 1734  ax-5 1836  ax-6 1885  ax-7 1932  ax-9 1996  ax-10 2016  ax-11 2031  ax-12 2044  ax-13 2245  ax-ext 2601
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-tru 1483  df-ex 1702  df-nf 1707  df-sb 1878  df-clab 2608  df-cleq 2614  df-clel 2617  df-nfc 2750  df-ral 2912  df-rab 2916  df-in 3566  df-ss 3573
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator