HomeHome Metamath Proof Explorer
Theorem List (p. 343 of 450)
< Previous  Next >
Bad symbols? Try the
GIF version.

Mirrors  >  Metamath Home Page  >  MPE Home Page  >  Theorem List Contents  >  Recent Proofs       This page: Page List

Color key:    Metamath Proof Explorer  Metamath Proof Explorer
(1-28695)
  Hilbert Space Explorer  Hilbert Space Explorer
(28696-30218)
  Users' Mathboxes  Users' Mathboxes
(30219-44955)
 

Theorem List for Metamath Proof Explorer - 34201-34300   *Has distinct variable group(s)
TypeLabelDescription
Statement
 
Theorembj-rexcom4bv 34201* Version of rexcom4b 3524 and bj-rexcom4b 34202 with a disjoint variable condition on 𝑥, 𝑉, hence removing dependency on df-sb 2070 and df-clab 2800 (so that it depends on df-clel 2893 and df-rex 3144 only on top of first-order logic). Prefer its use over bj-rexcom4b 34202 when sufficient (in particular when 𝑉 is substituted for V). Note the 𝑉 in the hypothesis instead of V. (Contributed by BJ, 14-Sep-2019.) (Proof modification is discouraged.)
𝐵𝑉       (∃𝑥𝑦𝐴 (𝜑𝑥 = 𝐵) ↔ ∃𝑦𝐴 𝜑)
 
Theorembj-rexcom4b 34202* Remove from rexcom4b 3524 dependency on ax-ext 2793 and ax-13 2390 (and on df-or 844, df-cleq 2814, df-nfc 2963, df-v 3496). The hypothesis uses 𝑉 instead of V (see bj-isseti 34197 for the motivation). Use bj-rexcom4bv 34201 instead when sufficient (in particular when 𝑉 is substituted for V). (Contributed by BJ, 16-Jun-2019.) (Proof modification is discouraged.)
𝐵𝑉       (∃𝑥𝑦𝐴 (𝜑𝑥 = 𝐵) ↔ ∃𝑦𝐴 𝜑)
 
Theorembj-ceqsalt0 34203 The FOL content of ceqsalt 3527. Lemma for bj-ceqsalt 34205 and bj-ceqsaltv 34206. (Contributed by BJ, 26-Sep-2019.) (Proof modification is discouraged.)
((Ⅎ𝑥𝜓 ∧ ∀𝑥(𝜃 → (𝜑𝜓)) ∧ ∃𝑥𝜃) → (∀𝑥(𝜃𝜑) ↔ 𝜓))
 
Theorembj-ceqsalt1 34204 The FOL content of ceqsalt 3527. Lemma for bj-ceqsalt 34205 and bj-ceqsaltv 34206. TODO: consider removing if it does not add anything to bj-ceqsalt0 34203. (Contributed by BJ, 26-Sep-2019.) (Proof modification is discouraged.)
(𝜃 → ∃𝑥𝜒)       ((Ⅎ𝑥𝜓 ∧ ∀𝑥(𝜒 → (𝜑𝜓)) ∧ 𝜃) → (∀𝑥(𝜒𝜑) ↔ 𝜓))
 
Theorembj-ceqsalt 34205* Remove from ceqsalt 3527 dependency on ax-ext 2793 (and on df-cleq 2814 and df-v 3496). Note: this is not doable with ceqsralt 3528 (or ceqsralv 3533), which uses eleq1 2900, but the same dependence removal is possible for ceqsalg 3529, ceqsal 3531, ceqsalv 3532, cgsexg 3537, cgsex2g 3538, cgsex4g 3539, ceqsex 3540, ceqsexv 3541, ceqsex2 3543, ceqsex2v 3544, ceqsex3v 3545, ceqsex4v 3546, ceqsex6v 3547, ceqsex8v 3548, gencbvex 3549 (after changing 𝐴 = 𝑦 to 𝑦 = 𝐴), gencbvex2 3550, gencbval 3551, vtoclgft 3553 (it uses , whose justification nfcjust 2962 does not use ax-ext 2793) and several other vtocl* theorems (see for instance bj-vtoclg1f 34237). See also bj-ceqsaltv 34206. (Contributed by BJ, 16-Jun-2019.) (Proof modification is discouraged.)
((Ⅎ𝑥𝜓 ∧ ∀𝑥(𝑥 = 𝐴 → (𝜑𝜓)) ∧ 𝐴𝑉) → (∀𝑥(𝑥 = 𝐴𝜑) ↔ 𝜓))
 
Theorembj-ceqsaltv 34206* Version of bj-ceqsalt 34205 with a disjoint variable condition on 𝑥, 𝑉, removing dependency on df-sb 2070 and df-clab 2800. Prefer its use over bj-ceqsalt 34205 when sufficient (in particular when 𝑉 is substituted for V). (Contributed by BJ, 16-Jun-2019.) (Proof modification is discouraged.)
((Ⅎ𝑥𝜓 ∧ ∀𝑥(𝑥 = 𝐴 → (𝜑𝜓)) ∧ 𝐴𝑉) → (∀𝑥(𝑥 = 𝐴𝜑) ↔ 𝜓))
 
Theorembj-ceqsalg0 34207 The FOL content of ceqsalg 3529. (Contributed by BJ, 12-Oct-2019.) (Proof modification is discouraged.)
𝑥𝜓    &   (𝜒 → (𝜑𝜓))       (∃𝑥𝜒 → (∀𝑥(𝜒𝜑) ↔ 𝜓))
 
Theorembj-ceqsalg 34208* Remove from ceqsalg 3529 dependency on ax-ext 2793 (and on df-cleq 2814 and df-v 3496). See also bj-ceqsalgv 34210. (Contributed by BJ, 12-Oct-2019.) (Proof modification is discouraged.)
𝑥𝜓    &   (𝑥 = 𝐴 → (𝜑𝜓))       (𝐴𝑉 → (∀𝑥(𝑥 = 𝐴𝜑) ↔ 𝜓))
 
Theorembj-ceqsalgALT 34209* Alternate proof of bj-ceqsalg 34208. (Contributed by BJ, 12-Oct-2019.) (Proof modification is discouraged.) (New usage is discouraged.)
𝑥𝜓    &   (𝑥 = 𝐴 → (𝜑𝜓))       (𝐴𝑉 → (∀𝑥(𝑥 = 𝐴𝜑) ↔ 𝜓))
 
Theorembj-ceqsalgv 34210* Version of bj-ceqsalg 34208 with a disjoint variable condition on 𝑥, 𝑉, removing dependency on df-sb 2070 and df-clab 2800. Prefer its use over bj-ceqsalg 34208 when sufficient (in particular when 𝑉 is substituted for V). (Contributed by BJ, 12-Oct-2019.) (Proof modification is discouraged.)
𝑥𝜓    &   (𝑥 = 𝐴 → (𝜑𝜓))       (𝐴𝑉 → (∀𝑥(𝑥 = 𝐴𝜑) ↔ 𝜓))
 
Theorembj-ceqsalgvALT 34211* Alternate proof of bj-ceqsalgv 34210. (Contributed by BJ, 12-Oct-2019.) (Proof modification is discouraged.) (New usage is discouraged.)
𝑥𝜓    &   (𝑥 = 𝐴 → (𝜑𝜓))       (𝐴𝑉 → (∀𝑥(𝑥 = 𝐴𝜑) ↔ 𝜓))
 
Theorembj-ceqsal 34212* Remove from ceqsal 3531 dependency on ax-ext 2793 (and on df-cleq 2814, df-v 3496, df-clab 2800, df-sb 2070). (Contributed by BJ, 12-Oct-2019.) (Proof modification is discouraged.)
𝑥𝜓    &   𝐴 ∈ V    &   (𝑥 = 𝐴 → (𝜑𝜓))       (∀𝑥(𝑥 = 𝐴𝜑) ↔ 𝜓)
 
Theorembj-ceqsalv 34213* Remove from ceqsalv 3532 dependency on ax-ext 2793 (and on df-cleq 2814, df-v 3496, df-clab 2800, df-sb 2070). (Contributed by BJ, 12-Oct-2019.) (Proof modification is discouraged.)
𝐴 ∈ V    &   (𝑥 = 𝐴 → (𝜑𝜓))       (∀𝑥(𝑥 = 𝐴𝜑) ↔ 𝜓)
 
Theorembj-spcimdv 34214* Remove from spcimdv 3592 dependency on ax-9 2124, ax-10 2145, ax-11 2161, ax-13 2390, ax-ext 2793, df-cleq 2814 (and df-nfc 2963, df-v 3496, df-or 844, df-tru 1540, df-nf 1785). For an even more economical version, see bj-spcimdvv 34215. (Contributed by BJ, 30-Nov-2020.) (Proof modification is discouraged.)
(𝜑𝐴𝐵)    &   ((𝜑𝑥 = 𝐴) → (𝜓𝜒))       (𝜑 → (∀𝑥𝜓𝜒))
 
Theorembj-spcimdvv 34215* Remove from spcimdv 3592 dependency on ax-7 2015, ax-8 2116, ax-10 2145, ax-11 2161, ax-12 2177 ax-13 2390, ax-ext 2793, df-cleq 2814, df-clab 2800 (and df-nfc 2963, df-v 3496, df-or 844, df-tru 1540, df-nf 1785) at the price of adding a disjoint variable condition on 𝑥, 𝐵 (but in usages, 𝑥 is typically a dummy, hence fresh, variable). For the version without this disjoint variable condition, see bj-spcimdv 34214. (Contributed by BJ, 3-Nov-2021.) (Proof modification is discouraged.)
(𝜑𝐴𝐵)    &   ((𝜑𝑥 = 𝐴) → (𝜓𝜒))       (𝜑 → (∀𝑥𝜓𝜒))
 
20.15.5.3  Characterization among sets versus among classes
 
Theoremelelb 34216 Equivalence between two common ways to characterize elements of a class 𝐵: the LHS says that sets are elements of 𝐵 if and only if they satisfy 𝜑 while the RHS says that classes are elements of 𝐵 if and only if they are sets and satisfy 𝜑. Therefore, the LHS is a characterization among sets while the RHS is a characterization among classes. Note that the LHS is often formulated using a class variable instead of the universe V while this is not possible for the RHS (apart from using 𝐵 itself, which would not be very useful). (Contributed by BJ, 26-Feb-2023.)
((𝐴 ∈ V → (𝐴𝐵𝜑)) ↔ (𝐴𝐵 ↔ (𝐴 ∈ V ∧ 𝜑)))
 
Theorembj-pwvrelb 34217 Characterization of the elements of the powerclass of the cartesian square of the universal class: they are exactly the sets which are binary relations. (Contributed by BJ, 16-Dec-2023.)
(𝐴 ∈ 𝒫 (V × V) ↔ (𝐴 ∈ V ∧ Rel 𝐴))
 
20.15.5.4  The nonfreeness quantifier for classes

In this section, we prove the symmetry of the nonfreeness quantifier for classes.

 
Theorembj-nfcsym 34218 The nonfreeness quantifier for classes defines a symmetric binary relation on var metavariables (irreflexivity is proved by nfnid 5276 with additional axioms; see also nfcv 2977). This could be proved from aecom 2449 and nfcvb 5277 but the latter requires a domain with at least two objects (hence uses extra axioms). (Contributed by BJ, 30-Sep-2018.) Proof modification is discouraged to avoid use of eqcomd 2827 instead of equcomd 2026; removing dependency on ax-ext 2793 is possible: prove weak versions (i.e. replace classes with setvars) of drnfc1 2997, eleq2d 2898 (using elequ2 2129), nfcvf 3007, dvelimc 3006, dvelimdc 3005, nfcvf2 3008. (Proof modification is discouraged.)
(𝑥𝑦𝑦𝑥)
 
20.15.5.5  Proposal for the definitions of class membership and class equality

Note: now that the proposals have been adopted as df-cleq 2814 and df-clel 2893, and that ax9ALT 2817 is in the main section, we only keep bj-ax9 34219 here as a weaker version of ax9ALT 2817 proved without ax-8 2116.

 
Theorembj-ax9 34219* Proof of ax-9 2124 from Tarski's FOL=, sp 2182, dfcleq 2815 and ax-ext 2793 (with two extra disjoint variable conditions on 𝑥, 𝑧 and 𝑦, 𝑧). See ax9ALT 2817 for a more general version, proved using also ax-8 2116. (Contributed by BJ, 24-Jun-2019.) (Proof modification is discouraged.) (New usage is discouraged.)
(𝑥 = 𝑦 → (𝑧𝑥𝑧𝑦))
 
20.15.5.6  Lemmas for class substitution

Some useful theorems for dealing with substitutions: sbbi 2317, sbcbig 3823, sbcel1g 4365, sbcel2 4367, sbcel12 4360, sbceqg 4361, csbvarg 4383.

 
Theorembj-sbeqALT 34220* Substitution in an equality (use the more general version bj-sbeq 34221 instead, without disjoint variable condition). (Contributed by BJ, 6-Oct-2018.) (New usage is discouraged.) (Proof modification is discouraged.)
([𝑦 / 𝑥]𝐴 = 𝐵𝑦 / 𝑥𝐴 = 𝑦 / 𝑥𝐵)
 
Theorembj-sbeq 34221 Distribute proper substitution through an equality relation. (See sbceqg 4361). (Contributed by BJ, 6-Oct-2018.)
([𝑦 / 𝑥]𝐴 = 𝐵𝑦 / 𝑥𝐴 = 𝑦 / 𝑥𝐵)
 
Theorembj-sbceqgALT 34222 Distribute proper substitution through an equality relation. Alternate proof of sbceqg 4361. (Contributed by BJ, 6-Oct-2018.) Proof modification is discouraged to avoid using sbceqg 4361, but the Metamath program "MM-PA> MINIMIZE_WITH * / EXCEPT sbceqg" command is ok. (Proof modification is discouraged.) (New usage is discouraged.)
(𝐴𝑉 → ([𝐴 / 𝑥]𝐵 = 𝐶𝐴 / 𝑥𝐵 = 𝐴 / 𝑥𝐶))
 
Theorembj-csbsnlem 34223* Lemma for bj-csbsn 34224 (in this lemma, 𝑥 cannot occur in 𝐴). (Contributed by BJ, 6-Oct-2018.) (New usage is discouraged.)
𝐴 / 𝑥{𝑥} = {𝐴}
 
Theorembj-csbsn 34224 Substitution in a singleton. (Contributed by BJ, 6-Oct-2018.)
𝐴 / 𝑥{𝑥} = {𝐴}
 
Theorembj-sbel1 34225* Version of sbcel1g 4365 when substituting a set. (Note: one could have a corresponding version of sbcel12 4360 when substituting a set, but the point here is that the antecedent of sbcel1g 4365 is not needed when substituting a set.) (Contributed by BJ, 6-Oct-2018.)
([𝑦 / 𝑥]𝐴𝐵𝑦 / 𝑥𝐴𝐵)
 
Theorembj-abv 34226 The class of sets verifying a tautology is the universal class. (Contributed by BJ, 24-Jul-2019.) (Proof modification is discouraged.)
(∀𝑥𝜑 → {𝑥𝜑} = V)
 
Theorembj-ab0 34227 The class of sets verifying a falsity is the empty set (closed form of abf 4356). (Contributed by BJ, 24-Jul-2019.) (Proof modification is discouraged.)
(∀𝑥 ¬ 𝜑 → {𝑥𝜑} = ∅)
 
Theorembj-abf 34228 Shorter proof of abf 4356 (which should be kept as abfALT). (Contributed by BJ, 24-Jul-2019.) (Proof modification is discouraged.)
¬ 𝜑       {𝑥𝜑} = ∅
 
Theorembj-csbprc 34229 More direct proof of csbprc 4358 (fewer essential steps). (Contributed by BJ, 24-Jul-2019.) (Proof modification is discouraged.)
𝐴 ∈ V → 𝐴 / 𝑥𝐵 = ∅)
 
20.15.5.7  Removing some axiom requirements and disjoint variable conditions
 
Theorembj-exlimvmpi 34230* A Fol lemma (exlimiv 1931 followed by mpi 20). (Contributed by BJ, 2-Jul-2022.) (Proof modification is discouraged.)
(𝜒 → (𝜑𝜓))    &   𝜑       (∃𝑥𝜒𝜓)
 
Theorembj-exlimmpi 34231 Lemma for bj-vtoclg1f1 34236 (an instance of this lemma is a version of bj-vtoclg1f1 34236 where 𝑥 and 𝑦 are identified). (Contributed by BJ, 30-Apr-2019.) (Proof modification is discouraged.)
𝑥𝜓    &   (𝜒 → (𝜑𝜓))    &   𝜑       (∃𝑥𝜒𝜓)
 
Theorembj-exlimmpbi 34232 Lemma for theorems of the vtoclg 3567 family. (Contributed by BJ, 3-Oct-2019.) (Proof modification is discouraged.)
𝑥𝜓    &   (𝜒 → (𝜑𝜓))    &   𝜑       (∃𝑥𝜒𝜓)
 
Theorembj-exlimmpbir 34233 Lemma for theorems of the vtoclg 3567 family. (Contributed by BJ, 3-Oct-2019.) (Proof modification is discouraged.)
𝑥𝜑    &   (𝜒 → (𝜑𝜓))    &   𝜓       (∃𝑥𝜒𝜑)
 
Theorembj-vtoclf 34234* Remove dependency on ax-ext 2793, df-clab 2800 and df-cleq 2814 (and df-sb 2070 and df-v 3496) from vtoclf 3558. (Contributed by BJ, 6-Oct-2019.) (Proof modification is discouraged.)
𝑥𝜓    &   𝐴𝑉    &   (𝑥 = 𝐴 → (𝜑𝜓))    &   𝜑       𝜓
 
Theorembj-vtocl 34235* Remove dependency on ax-ext 2793, df-clab 2800 and df-cleq 2814 (and df-sb 2070 and df-v 3496) from vtocl 3559. (Contributed by BJ, 6-Oct-2019.) (Proof modification is discouraged.)
𝐴𝑉    &   (𝑥 = 𝐴 → (𝜑𝜓))    &   𝜑       𝜓
 
Theorembj-vtoclg1f1 34236* The FOL content of vtoclg1f 3566 (hence not using ax-ext 2793, df-cleq 2814, df-nfc 2963, df-v 3496). Note the weakened "major" hypothesis and the disjoint variable condition between 𝑥 and 𝐴 (needed since the nonfreeness quantifier for classes is not available without ax-ext 2793; as a byproduct, this dispenses with ax-11 2161 and ax-13 2390). (Contributed by BJ, 30-Apr-2019.) (Proof modification is discouraged.)
𝑥𝜓    &   (𝑥 = 𝐴 → (𝜑𝜓))    &   𝜑       (∃𝑦 𝑦 = 𝐴𝜓)
 
Theorembj-vtoclg1f 34237* Reprove vtoclg1f 3566 from bj-vtoclg1f1 34236. This removes dependency on ax-ext 2793, df-cleq 2814 and df-v 3496. Use bj-vtoclg1fv 34238 instead when sufficient (in particular when 𝑉 is substituted for V). (Contributed by BJ, 14-Sep-2019.) (Proof modification is discouraged.)
𝑥𝜓    &   (𝑥 = 𝐴 → (𝜑𝜓))    &   𝜑       (𝐴𝑉𝜓)
 
Theorembj-vtoclg1fv 34238* Version of bj-vtoclg1f 34237 with a disjoint variable condition on 𝑥, 𝑉. This removes dependency on df-sb 2070 and df-clab 2800. Prefer its use over bj-vtoclg1f 34237 when sufficient (in particular when 𝑉 is substituted for V). (Contributed by BJ, 14-Sep-2019.) (Proof modification is discouraged.)
𝑥𝜓    &   (𝑥 = 𝐴 → (𝜑𝜓))    &   𝜑       (𝐴𝑉𝜓)
 
Theorembj-vtoclg 34239* A version of vtoclg 3567 with an additional disjoint variable condition (which is removable if we allow use of df-clab 2800, see bj-vtoclg1f 34237), which requires fewer axioms (i.e., removes dependency on ax-6 1970, ax-7 2015, ax-9 2124, ax-12 2177, ax-ext 2793, df-clab 2800, df-cleq 2814, df-v 3496). (Contributed by BJ, 2-Jul-2022.) (Proof modification is discouraged.)
(𝑥 = 𝐴 → (𝜑𝜓))    &   𝜑       (𝐴𝑉𝜓)
 
Theorembj-rabbida2 34240 Version of rabbidva2 3476 with disjoint variable condition replaced by nonfreeness hypothesis. (Contributed by BJ, 27-Apr-2019.)
𝑥𝜑    &   (𝜑 → ((𝑥𝐴𝜓) ↔ (𝑥𝐵𝜒)))       (𝜑 → {𝑥𝐴𝜓} = {𝑥𝐵𝜒})
 
Theorembj-rabeqd 34241 Deduction form of rabeq 3483. Note that contrary to rabeq 3483 it has no disjoint variable condition. (Contributed by BJ, 27-Apr-2019.)
𝑥𝜑    &   (𝜑𝐴 = 𝐵)       (𝜑 → {𝑥𝐴𝜓} = {𝑥𝐵𝜓})
 
Theorembj-rabeqbid 34242 Version of rabeqbidv 3485 with two disjoint variable conditions removed and the third replaced by a nonfreeness hypothesis. (Contributed by BJ, 27-Apr-2019.)
𝑥𝜑    &   (𝜑𝐴 = 𝐵)    &   (𝜑 → (𝜓𝜒))       (𝜑 → {𝑥𝐴𝜓} = {𝑥𝐵𝜒})
 
Theorembj-rabeqbida 34243 Version of rabeqbidva 3486 with two disjoint variable conditions removed and the third replaced by a nonfreeness hypothesis. (Contributed by BJ, 27-Apr-2019.)
𝑥𝜑    &   (𝜑𝐴 = 𝐵)    &   ((𝜑𝑥𝐴) → (𝜓𝜒))       (𝜑 → {𝑥𝐴𝜓} = {𝑥𝐵𝜒})
 
Theorembj-seex 34244* Version of seex 5518 with a disjoint variable condition replaced by a nonfreeness hypothesis (for the sake of illustration). (Contributed by BJ, 27-Apr-2019.)
𝑥𝐵       ((𝑅 Se 𝐴𝐵𝐴) → {𝑥𝐴𝑥𝑅𝐵} ∈ V)
 
Theorembj-nfcf 34245* Version of df-nfc 2963 with a disjoint variable condition replaced with a nonfreeness hypothesis. (Contributed by BJ, 2-May-2019.)
𝑦𝐴       (𝑥𝐴 ↔ ∀𝑦𝑥 𝑦𝐴)
 
Theorembj-zfauscl 34246* General version of zfauscl 5205.

Remark: the comment in zfauscl 5205 is misleading: the essential use of ax-ext 2793 is the one via eleq2 2901 and not the one via vtocl 3559, since the latter can be proved without ax-ext 2793 (see bj-vtoclg 34239).

(Contributed by BJ, 2-Jul-2022.) (Proof modification is discouraged.)

(𝐴𝑉 → ∃𝑦𝑥(𝑥𝑦 ↔ (𝑥𝐴𝜑)))
 
20.15.5.8  Class abstractions

A few additional theorems on class abstractions and restricted class abstractions.

 
Theorembj-unrab 34247* Generalization of unrab 4274. Equality need not hold. (Contributed by BJ, 21-Apr-2019.)
({𝑥𝐴𝜑} ∪ {𝑥𝐵𝜓}) ⊆ {𝑥 ∈ (𝐴𝐵) ∣ (𝜑𝜓)}
 
Theorembj-inrab 34248 Generalization of inrab 4275. (Contributed by BJ, 21-Apr-2019.)
({𝑥𝐴𝜑} ∩ {𝑥𝐵𝜓}) = {𝑥 ∈ (𝐴𝐵) ∣ (𝜑𝜓)}
 
Theorembj-inrab2 34249 Shorter proof of inrab 4275. (Contributed by BJ, 21-Apr-2019.) (Proof modification is discouraged.)
({𝑥𝐴𝜑} ∩ {𝑥𝐴𝜓}) = {𝑥𝐴 ∣ (𝜑𝜓)}
 
Theorembj-inrab3 34250* Generalization of dfrab3ss 4281, which it may shorten. (Contributed by BJ, 21-Apr-2019.) (Revised by OpenAI, 7-Jul-2020.)
(𝐴 ∩ {𝑥𝐵𝜑}) = ({𝑥𝐴𝜑} ∩ 𝐵)
 
Theorembj-rabtr 34251* Restricted class abstraction with true formula. (Contributed by BJ, 22-Apr-2019.)
{𝑥𝐴 ∣ ⊤} = 𝐴
 
Theorembj-rabtrALT 34252* Alternate proof of bj-rabtr 34251. (Contributed by BJ, 22-Apr-2019.) (Proof modification is discouraged.) (New usage is discouraged.)
{𝑥𝐴 ∣ ⊤} = 𝐴
 
Theorembj-rabtrAUTO 34253* Proof of bj-rabtr 34251 found automatically by the Metamath program "MM-PA> IMPROVE ALL / DEPTH 3 / 3" command followed by "MM-PA> MINIMIZE_WITH *". (Contributed by BJ, 22-Apr-2019.) (Proof modification is discouraged.) (New usage is discouraged.)
{𝑥𝐴 ∣ ⊤} = 𝐴
 
20.15.5.9  Restricted nonfreeness

In this subsection, we define restricted nonfreeness (or relative nonfreeness).

 
Syntaxwrnf 34254 Syntax for restricted nonfreeness.
wff 𝑥𝐴𝜑
 
Definitiondf-bj-rnf 34255 Definition of restricted nonfreeness. Informally, the proposition 𝑥𝐴𝜑 means that 𝜑(𝑥) does not vary on 𝐴. (Contributed by BJ, 19-Mar-2021.)
(Ⅎ𝑥𝐴𝜑 ↔ (∃𝑥𝐴 𝜑 → ∀𝑥𝐴 𝜑))
 
20.15.5.10  Russell's paradox

A few results around Russell's paradox. For clarity, we prove separately its FOL part (bj-ru0 34256) and then two versions (bj-ru1 34257 and bj-ru 34258). Special attention is put on minimizing axiom depencencies.

 
Theorembj-ru0 34256* The FOL part of Russell's paradox ru 3771 (see also bj-ru1 34257, bj-ru 34258). Use of elequ1 2121, bj-elequ12 34012 (instead of eleq1 2900, eleq12d 2907 as in ru 3771) permits to remove dependency on ax-10 2145, ax-11 2161, ax-12 2177, ax-ext 2793, df-sb 2070, df-clab 2800, df-cleq 2814, df-clel 2893. (Contributed by BJ, 12-Oct-2019.) (Proof modification is discouraged.)
¬ ∀𝑥(𝑥𝑦 ↔ ¬ 𝑥𝑥)
 
Theorembj-ru1 34257* A version of Russell's paradox ru 3771 (see also bj-ru 34258). (Contributed by BJ, 12-Oct-2019.) (Proof modification is discouraged.)
¬ ∃𝑦 𝑦 = {𝑥 ∣ ¬ 𝑥𝑥}
 
Theorembj-ru 34258 Remove dependency on ax-13 2390 (and df-v 3496) from Russell's paradox ru 3771 expressed with primitive symbols and with a class variable 𝑉. Note the more economical use of bj-elissetv 34194 instead of isset 3506 to avoid use of df-v 3496. (Contributed by BJ, 12-Oct-2019.) (Proof modification is discouraged.)
¬ {𝑥 ∣ ¬ 𝑥𝑥} ∈ 𝑉
 
20.15.5.11  Curry's paradox in set theory
 
Theoremcurrysetlem 34259* Lemma for currysetlem 34259, where it is used with (𝑥𝑥𝜑) substituted for 𝜓. (Contributed by BJ, 23-Sep-2023.) This proof is intuitionistically valid. (Proof modification is discouraged.)
({𝑥𝜓} ∈ 𝑉 → ({𝑥𝜓} ∈ {𝑥 ∣ (𝑥𝑥𝜑)} ↔ ({𝑥𝜓} ∈ {𝑥𝜓} → 𝜑)))
 
Theoremcurryset 34260* Curry's paradox in set theory. This can be seen as a generalization of Russell's paradox, which corresponds to the case where 𝜑 is . See alternate exposal of basically the same proof currysetALT 34264. (Contributed by BJ, 23-Sep-2023.) This proof is intuitionistically valid. (Proof modification is discouraged.)
¬ {𝑥 ∣ (𝑥𝑥𝜑)} ∈ 𝑉
 
Theoremcurrysetlem1 34261* Lemma for currysetALT 34264. (Contributed by BJ, 23-Sep-2023.) This proof is intuitionistically valid. (Proof modification is discouraged.)
𝑋 = {𝑥 ∣ (𝑥𝑥𝜑)}       (𝑋𝑉 → (𝑋𝑋 ↔ (𝑋𝑋𝜑)))
 
Theoremcurrysetlem2 34262* Lemma for currysetALT 34264. (Contributed by BJ, 23-Sep-2023.) This proof is intuitionistically valid. (Proof modification is discouraged.)
𝑋 = {𝑥 ∣ (𝑥𝑥𝜑)}       (𝑋𝑉 → (𝑋𝑋𝜑))
 
Theoremcurrysetlem3 34263* Lemma for currysetALT 34264. (Contributed by BJ, 23-Sep-2023.) This proof is intuitionistically valid. (Proof modification is discouraged.)
𝑋 = {𝑥 ∣ (𝑥𝑥𝜑)}        ¬ 𝑋𝑉
 
TheoremcurrysetALT 34264* Alternate proof of curryset 34260, or more precisely alternate exposal of the same proof. (Contributed by BJ, 23-Sep-2023.) This proof is intuitionistically valid. (Proof modification is discouraged.) (New usage is discouraged.)
¬ {𝑥 ∣ (𝑥𝑥𝜑)} ∈ 𝑉
 
20.15.5.12  Some disjointness results

A few utility theorems on disjointness of classes.

 
Theorembj-n0i 34265* Inference associated with n0 4310. Shortens 2ndcdisj 22064 (2888>2878), notzfaus 5262 (264>253). (Contributed by BJ, 22-Apr-2019.)
𝐴 ≠ ∅       𝑥 𝑥𝐴
 
Theorembj-disjcsn 34266 A class is disjoint from its singleton. A consequence of regularity. Shorter proof than bnj521 32007 and does not depend on df-ne 3017. (Contributed by BJ, 4-Apr-2019.)
(𝐴 ∩ {𝐴}) = ∅
 
Theorembj-disjsn01 34267 Disjointness of the singletons containing 0 and 1. This is a consequence of bj-disjcsn 34266 but the present proof does not use regularity. (Contributed by BJ, 4-Apr-2019.) (Proof modification is discouraged.)
({∅} ∩ {1o}) = ∅
 
Theorembj-0nel1 34268 The empty set does not belong to {1o}. (Contributed by BJ, 6-Apr-2019.)
∅ ∉ {1o}
 
Theorembj-1nel0 34269 1o does not belong to {∅}. (Contributed by BJ, 6-Apr-2019.)
1o ∉ {∅}
 
20.15.5.13  Complements on direct products

A few utility theorems on direct products.

 
Theorembj-xpimasn 34270 The image of a singleton, general case. [Change and relabel xpimasn 6042 accordingly, maybe to xpima2sn.] (Contributed by BJ, 6-Apr-2019.)
((𝐴 × 𝐵) “ {𝑋}) = if(𝑋𝐴, 𝐵, ∅)
 
Theorembj-xpima1sn 34271 The image of a singleton by a direct product, empty case. [Change and relabel xpimasn 6042 accordingly, maybe to xpima2sn.] (Contributed by BJ, 6-Apr-2019.)
𝑋𝐴 → ((𝐴 × 𝐵) “ {𝑋}) = ∅)
 
Theorembj-xpima1snALT 34272 Alternate proof of bj-xpima1sn 34271. (Contributed by BJ, 6-Apr-2019.) (Proof modification is discouraged.) (New usage is discouraged.)
𝑋𝐴 → ((𝐴 × 𝐵) “ {𝑋}) = ∅)
 
Theorembj-xpima2sn 34273 The image of a singleton by a direct product, nonempty case. [To replace xpimasn 6042] (Contributed by BJ, 6-Apr-2019.) (Proof modification is discouraged.)
(𝑋𝐴 → ((𝐴 × 𝐵) “ {𝑋}) = 𝐵)
 
Theorembj-xpnzex 34274 If the first factor of a product is nonempty, and the product is a set, then the second factor is a set. UPDATE: this is actually the curried (exported) form of xpexcnv 7625 (up to commutation in the product). (Contributed by BJ, 6-Oct-2018.) (Proof modification is discouraged.)
(𝐴 ≠ ∅ → ((𝐴 × 𝐵) ∈ 𝑉𝐵 ∈ V))
 
Theorembj-xpexg2 34275 Curried (exported) form of xpexg 7473. (Contributed by BJ, 2-Apr-2019.)
(𝐴𝑉 → (𝐵𝑊 → (𝐴 × 𝐵) ∈ V))
 
Theorembj-xpnzexb 34276 If the first factor of a product is a nonempty set, then the product is a set if and only if the second factor is a set. (Contributed by BJ, 2-Apr-2019.)
(𝐴 ∈ (𝑉 ∖ {∅}) → (𝐵 ∈ V ↔ (𝐴 × 𝐵) ∈ V))
 
Theorembj-cleq 34277* Substitution property for certain classes. (Contributed by BJ, 2-Apr-2019.)
(𝐴 = 𝐵 → {𝑥 ∣ {𝑥} ∈ (𝐴𝐶)} = {𝑥 ∣ {𝑥} ∈ (𝐵𝐶)})
 
20.15.5.14  "Singletonization" and tagging

This subsection introduces the "singletonization" and the "tagging" of a class. The singletonization of a class is the class of singletons of elements of that class. It is useful since all nonsingletons are disjoint from it, so one can easily adjoin to it disjoint elements, which is what the tagging does: it adjoins the empty set. This can be used for instance to define the one-point compactification of a topological space. It will be used in the next section to define tuples which work for proper classes.

 
Theorembj-snsetex 34278* The class of sets "whose singletons" belong to a set is a set. Nice application of ax-rep 5190. (Contributed by BJ, 6-Oct-2018.)
(𝐴𝑉 → {𝑥 ∣ {𝑥} ∈ 𝐴} ∈ V)
 
Theorembj-clex 34279* Sethood of certain classes. (Contributed by BJ, 2-Apr-2019.)
(𝐴𝑉 → {𝑥 ∣ {𝑥} ∈ (𝐴𝐵)} ∈ V)
 
Syntaxbj-csngl 34280 Syntax for singletonization. (Contributed by BJ, 6-Oct-2018.)
class sngl 𝐴
 
Definitiondf-bj-sngl 34281* Definition of "singletonization". The class sngl 𝐴 is isomorphic to 𝐴 and since it contains only singletons, it can be easily be adjoined disjoint elements, which can be useful in various constructions. (Contributed by BJ, 6-Oct-2018.)
sngl 𝐴 = {𝑥 ∣ ∃𝑦𝐴 𝑥 = {𝑦}}
 
Theorembj-sngleq 34282 Substitution property for sngl. (Contributed by BJ, 6-Oct-2018.)
(𝐴 = 𝐵 → sngl 𝐴 = sngl 𝐵)
 
Theorembj-elsngl 34283* Characterization of the elements of the singletonization of a class. (Contributed by BJ, 6-Oct-2018.)
(𝐴 ∈ sngl 𝐵 ↔ ∃𝑥𝐵 𝐴 = {𝑥})
 
Theorembj-snglc 34284 Characterization of the elements of 𝐴 in terms of elements of its singletonization. (Contributed by BJ, 6-Oct-2018.)
(𝐴𝐵 ↔ {𝐴} ∈ sngl 𝐵)
 
Theorembj-snglss 34285 The singletonization of a class is included in its powerclass. (Contributed by BJ, 6-Oct-2018.)
sngl 𝐴 ⊆ 𝒫 𝐴
 
Theorembj-0nelsngl 34286 The empty set is not a member of a singletonization (neither is any nonsingleton, in particular any von Neuman ordinal except possibly df-1o 8102). (Contributed by BJ, 6-Oct-2018.)
∅ ∉ sngl 𝐴
 
Theorembj-snglinv 34287* Inverse of singletonization. (Contributed by BJ, 6-Oct-2018.)
𝐴 = {𝑥 ∣ {𝑥} ∈ sngl 𝐴}
 
Theorembj-snglex 34288 A class is a set if and only if its singletonization is a set. (Contributed by BJ, 6-Oct-2018.)
(𝐴 ∈ V ↔ sngl 𝐴 ∈ V)
 
Syntaxbj-ctag 34289 Syntax for the tagged copy of a class. (Contributed by BJ, 6-Oct-2018.)
class tag 𝐴
 
Definitiondf-bj-tag 34290 Definition of the tagged copy of a class, that is, the adjunction to (an isomorph of) 𝐴 of a disjoint element (here, the empty set). Remark: this could be used for the one-point compactification of a topological space. (Contributed by BJ, 6-Oct-2018.)
tag 𝐴 = (sngl 𝐴 ∪ {∅})
 
Theorembj-tageq 34291 Substitution property for tag. (Contributed by BJ, 6-Oct-2018.)
(𝐴 = 𝐵 → tag 𝐴 = tag 𝐵)
 
Theorembj-eltag 34292* Characterization of the elements of the tagging of a class. (Contributed by BJ, 6-Oct-2018.)
(𝐴 ∈ tag 𝐵 ↔ (∃𝑥𝐵 𝐴 = {𝑥} ∨ 𝐴 = ∅))
 
Theorembj-0eltag 34293 The empty set belongs to the tagging of a class. (Contributed by BJ, 6-Apr-2019.)
∅ ∈ tag 𝐴
 
Theorembj-tagn0 34294 The tagging of a class is nonempty. (Contributed by BJ, 6-Apr-2019.)
tag 𝐴 ≠ ∅
 
Theorembj-tagss 34295 The tagging of a class is included in its powerclass. (Contributed by BJ, 6-Oct-2018.)
tag 𝐴 ⊆ 𝒫 𝐴
 
Theorembj-snglsstag 34296 The singletonization is included in the tagging. (Contributed by BJ, 6-Oct-2018.)
sngl 𝐴 ⊆ tag 𝐴
 
Theorembj-sngltagi 34297 The singletonization is included in the tagging. (Contributed by BJ, 6-Oct-2018.)
(𝐴 ∈ sngl 𝐵𝐴 ∈ tag 𝐵)
 
Theorembj-sngltag 34298 The singletonization and the tagging of a set contain the same singletons. (Contributed by BJ, 6-Oct-2018.)
(𝐴𝑉 → ({𝐴} ∈ sngl 𝐵 ↔ {𝐴} ∈ tag 𝐵))
 
Theorembj-tagci 34299 Characterization of the elements of 𝐵 in terms of elements of its tagged version. (Contributed by BJ, 6-Oct-2018.)
(𝐴𝐵 → {𝐴} ∈ tag 𝐵)
 
Theorembj-tagcg 34300 Characterization of the elements of 𝐵 in terms of elements of its tagged version. (Contributed by BJ, 6-Oct-2018.)
(𝐴𝑉 → (𝐴𝐵 ↔ {𝐴} ∈ tag 𝐵))
    < Previous  Next >

Page List
Jump to page: Contents  1 1-100 2 101-200 3 201-300 4 301-400 5 401-500 6 501-600 7 601-700 8 701-800 9 801-900 10 901-1000 11 1001-1100 12 1101-1200 13 1201-1300 14 1301-1400 15 1401-1500 16 1501-1600 17 1601-1700 18 1701-1800 19 1801-1900 20 1901-2000 21 2001-2100 22 2101-2200 23 2201-2300 24 2301-2400 25 2401-2500 26 2501-2600 27 2601-2700 28 2701-2800 29 2801-2900 30 2901-3000 31 3001-3100 32 3101-3200 33 3201-3300 34 3301-3400 35 3401-3500 36 3501-3600 37 3601-3700 38 3701-3800 39 3801-3900 40 3901-4000 41 4001-4100 42 4101-4200 43 4201-4300 44 4301-4400 45 4401-4500 46 4501-4600 47 4601-4700 48 4701-4800 49 4801-4900 50 4901-5000 51 5001-5100 52 5101-5200 53 5201-5300 54 5301-5400 55 5401-5500 56 5501-5600 57 5601-5700 58 5701-5800 59 5801-5900 60 5901-6000 61 6001-6100 62 6101-6200 63 6201-6300 64 6301-6400 65 6401-6500 66 6501-6600 67 6601-6700 68 6701-6800 69 6801-6900 70 6901-7000 71 7001-7100 72 7101-7200 73 7201-7300 74 7301-7400 75 7401-7500 76 7501-7600 77 7601-7700 78 7701-7800 79 7801-7900 80 7901-8000 81 8001-8100 82 8101-8200 83 8201-8300 84 8301-8400 85 8401-8500 86 8501-8600 87 8601-8700 88 8701-8800 89 8801-8900 90 8901-9000 91 9001-9100 92 9101-9200 93 9201-9300 94 9301-9400 95 9401-9500 96 9501-9600 97 9601-9700 98 9701-9800 99 9801-9900 100 9901-10000 101 10001-10100 102 10101-10200 103 10201-10300 104 10301-10400 105 10401-10500 106 10501-10600 107 10601-10700 108 10701-10800 109 10801-10900 110 10901-11000 111 11001-11100 112 11101-11200 113 11201-11300 114 11301-11400 115 11401-11500 116 11501-11600 117 11601-11700 118 11701-11800 119 11801-11900 120 11901-12000 121 12001-12100 122 12101-12200 123 12201-12300 124 12301-12400 125 12401-12500 126 12501-12600 127 12601-12700 128 12701-12800 129 12801-12900 130 12901-13000 131 13001-13100 132 13101-13200 133 13201-13300 134 13301-13400 135 13401-13500 136 13501-13600 137 13601-13700 138 13701-13800 139 13801-13900 140 13901-14000 141 14001-14100 142 14101-14200 143 14201-14300 144 14301-14400 145 14401-14500 146 14501-14600 147 14601-14700 148 14701-14800 149 14801-14900 150 14901-15000 151 15001-15100 152 15101-15200 153 15201-15300 154 15301-15400 155 15401-15500 156 15501-15600 157 15601-15700 158 15701-15800 159 15801-15900 160 15901-16000 161 16001-16100 162 16101-16200 163 16201-16300 164 16301-16400 165 16401-16500 166 16501-16600 167 16601-16700 168 16701-16800 169 16801-16900 170 16901-17000 171 17001-17100 172 17101-17200 173 17201-17300 174 17301-17400 175 17401-17500 176 17501-17600 177 17601-17700 178 17701-17800 179 17801-17900 180 17901-18000 181 18001-18100 182 18101-18200 183 18201-18300 184 18301-18400 185 18401-18500 186 18501-18600 187 18601-18700 188 18701-18800 189 18801-18900 190 18901-19000 191 19001-19100 192 19101-19200 193 19201-19300 194 19301-19400 195 19401-19500 196 19501-19600 197 19601-19700 198 19701-19800 199 19801-19900 200 19901-20000 201 20001-20100 202 20101-20200 203 20201-20300 204 20301-20400 205 20401-20500 206 20501-20600 207 20601-20700 208 20701-20800 209 20801-20900 210 20901-21000 211 21001-21100 212 21101-21200 213 21201-21300 214 21301-21400 215 21401-21500 216 21501-21600 217 21601-21700 218 21701-21800 219 21801-21900 220 21901-22000 221 22001-22100 222 22101-22200 223 22201-22300 224 22301-22400 225 22401-22500 226 22501-22600 227 22601-22700 228 22701-22800 229 22801-22900 230 22901-23000 231 23001-23100 232 23101-23200 233 23201-23300 234 23301-23400 235 23401-23500 236 23501-23600 237 23601-23700 238 23701-23800 239 23801-23900 240 23901-24000 241 24001-24100 242 24101-24200 243 24201-24300 244 24301-24400 245 24401-24500 246 24501-24600 247 24601-24700 248 24701-24800 249 24801-24900 250 24901-25000 251 25001-25100 252 25101-25200 253 25201-25300 254 25301-25400 255 25401-25500 256 25501-25600 257 25601-25700 258 25701-25800 259 25801-25900 260 25901-26000 261 26001-26100 262 26101-26200 263 26201-26300 264 26301-26400 265 26401-26500 266 26501-26600 267 26601-26700 268 26701-26800 269 26801-26900 270 26901-27000 271 27001-27100 272 27101-27200 273 27201-27300 274 27301-27400 275 27401-27500 276 27501-27600 277 27601-27700 278 27701-27800 279 27801-27900 280 27901-28000 281 28001-28100 282 28101-28200 283 28201-28300 284 28301-28400 285 28401-28500 286 28501-28600 287 28601-28700 288 28701-28800 289 28801-28900 290 28901-29000 291 29001-29100 292 29101-29200 293 29201-29300 294 29301-29400 295 29401-29500 296 29501-29600 297 29601-29700 298 29701-29800 299 29801-29900 300 29901-30000 301 30001-30100 302 30101-30200 303 30201-30300 304 30301-30400 305 30401-30500 306 30501-30600 307 30601-30700 308 30701-30800 309 30801-30900 310 30901-31000 311 31001-31100 312 31101-31200 313 31201-31300 314 31301-31400 315 31401-31500 316 31501-31600 317 31601-31700 318 31701-31800 319 31801-31900 320 31901-32000 321 32001-32100 322 32101-32200 323 32201-32300 324 32301-32400 325 32401-32500 326 32501-32600 327 32601-32700 328 32701-32800 329 32801-32900 330 32901-33000 331 33001-33100 332 33101-33200 333 33201-33300 334 33301-33400 335 33401-33500 336 33501-33600 337 33601-33700 338 33701-33800 339 33801-33900 340 33901-34000 341 34001-34100 342 34101-34200 343 34201-34300 344 34301-34400 345 34401-34500 346 34501-34600 347 34601-34700 348 34701-34800 349 34801-34900 350 34901-35000 351 35001-35100 352 35101-35200 353 35201-35300 354 35301-35400 355 35401-35500 356 35501-35600 357 35601-35700 358 35701-35800 359 35801-35900 360 35901-36000 361 36001-36100 362 36101-36200 363 36201-36300 364 36301-36400 365 36401-36500 366 36501-36600 367 36601-36700 368 36701-36800 369 36801-36900 370 36901-37000 371 37001-37100 372 37101-37200 373 37201-37300 374 37301-37400 375 37401-37500 376 37501-37600 377 37601-37700 378 37701-37800 379 37801-37900 380 37901-38000 381 38001-38100 382 38101-38200 383 38201-38300 384 38301-38400 385 38401-38500 386 38501-38600 387 38601-38700 388 38701-38800 389 38801-38900 390 38901-39000 391 39001-39100 392 39101-39200 393 39201-39300 394 39301-39400 395 39401-39500 396 39501-39600 397 39601-39700 398 39701-39800 399 39801-39900 400 39901-40000 401 40001-40100 402 40101-40200 403 40201-40300 404 40301-40400 405 40401-40500 406 40501-40600 407 40601-40700 408 40701-40800 409 40801-40900 410 40901-41000 411 41001-41100 412 41101-41200 413 41201-41300 414 41301-41400 415 41401-41500 416 41501-41600 417 41601-41700 418 41701-41800 419 41801-41900 420 41901-42000 421 42001-42100 422 42101-42200 423 42201-42300 424 42301-42400 425 42401-42500 426 42501-42600 427 42601-42700 428 42701-42800 429 42801-42900 430 42901-43000 431 43001-43100 432 43101-43200 433 43201-43300 434 43301-43400 435 43401-43500 436 43501-43600 437 43601-43700 438 43701-43800 439 43801-43900 440 43901-44000 441 44001-44100 442 44101-44200 443 44201-44300 444 44301-44400 445 44401-44500 446 44501-44600 447 44601-44700 448 44701-44800 449 44801-44900 450 44901-44955
  Copyright terms: Public domain < Previous  Next >