![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > clsslem | Structured version Visualization version GIF version |
Description: The closure of a subclass is a subclass of the closure. (Contributed by RP, 16-May-2020.) |
Ref | Expression |
---|---|
clsslem | ⊢ (𝑅 ⊆ 𝑆 → ∩ {𝑟 ∣ (𝑅 ⊆ 𝑟 ∧ 𝜑)} ⊆ ∩ {𝑟 ∣ (𝑆 ⊆ 𝑟 ∧ 𝜑)}) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | sstr2 3643 | . . . 4 ⊢ (𝑅 ⊆ 𝑆 → (𝑆 ⊆ 𝑟 → 𝑅 ⊆ 𝑟)) | |
2 | 1 | anim1d 587 | . . 3 ⊢ (𝑅 ⊆ 𝑆 → ((𝑆 ⊆ 𝑟 ∧ 𝜑) → (𝑅 ⊆ 𝑟 ∧ 𝜑))) |
3 | 2 | ss2abdv 3708 | . 2 ⊢ (𝑅 ⊆ 𝑆 → {𝑟 ∣ (𝑆 ⊆ 𝑟 ∧ 𝜑)} ⊆ {𝑟 ∣ (𝑅 ⊆ 𝑟 ∧ 𝜑)}) |
4 | intss 4530 | . 2 ⊢ ({𝑟 ∣ (𝑆 ⊆ 𝑟 ∧ 𝜑)} ⊆ {𝑟 ∣ (𝑅 ⊆ 𝑟 ∧ 𝜑)} → ∩ {𝑟 ∣ (𝑅 ⊆ 𝑟 ∧ 𝜑)} ⊆ ∩ {𝑟 ∣ (𝑆 ⊆ 𝑟 ∧ 𝜑)}) | |
5 | 3, 4 | syl 17 | 1 ⊢ (𝑅 ⊆ 𝑆 → ∩ {𝑟 ∣ (𝑅 ⊆ 𝑟 ∧ 𝜑)} ⊆ ∩ {𝑟 ∣ (𝑆 ⊆ 𝑟 ∧ 𝜑)}) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 383 {cab 2637 ⊆ wss 3607 ∩ cint 4507 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1762 ax-4 1777 ax-5 1879 ax-6 1945 ax-7 1981 ax-9 2039 ax-10 2059 ax-11 2074 ax-12 2087 ax-13 2282 ax-ext 2631 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-tru 1526 df-ex 1745 df-nf 1750 df-sb 1938 df-clab 2638 df-cleq 2644 df-clel 2647 df-nfc 2782 df-ral 2946 df-in 3614 df-ss 3621 df-int 4508 |
This theorem is referenced by: trclsslem 13775 |
Copyright terms: Public domain | W3C validator |