Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  compsscnvlem Structured version   Visualization version   GIF version

Theorem compsscnvlem 9136
 Description: Lemma for compsscnv 9137. (Contributed by Mario Carneiro, 17-May-2015.)
Assertion
Ref Expression
compsscnvlem ((𝑥 ∈ 𝒫 𝐴𝑦 = (𝐴𝑥)) → (𝑦 ∈ 𝒫 𝐴𝑥 = (𝐴𝑦)))
Distinct variable group:   𝑥,𝑦,𝐴

Proof of Theorem compsscnvlem
StepHypRef Expression
1 simpr 477 . . . 4 ((𝑥 ∈ 𝒫 𝐴𝑦 = (𝐴𝑥)) → 𝑦 = (𝐴𝑥))
2 difss 3715 . . . 4 (𝐴𝑥) ⊆ 𝐴
31, 2syl6eqss 3634 . . 3 ((𝑥 ∈ 𝒫 𝐴𝑦 = (𝐴𝑥)) → 𝑦𝐴)
4 selpw 4137 . . 3 (𝑦 ∈ 𝒫 𝐴𝑦𝐴)
53, 4sylibr 224 . 2 ((𝑥 ∈ 𝒫 𝐴𝑦 = (𝐴𝑥)) → 𝑦 ∈ 𝒫 𝐴)
61difeq2d 3706 . . 3 ((𝑥 ∈ 𝒫 𝐴𝑦 = (𝐴𝑥)) → (𝐴𝑦) = (𝐴 ∖ (𝐴𝑥)))
7 elpwi 4140 . . . . 5 (𝑥 ∈ 𝒫 𝐴𝑥𝐴)
87adantr 481 . . . 4 ((𝑥 ∈ 𝒫 𝐴𝑦 = (𝐴𝑥)) → 𝑥𝐴)
9 dfss4 3836 . . . 4 (𝑥𝐴 ↔ (𝐴 ∖ (𝐴𝑥)) = 𝑥)
108, 9sylib 208 . . 3 ((𝑥 ∈ 𝒫 𝐴𝑦 = (𝐴𝑥)) → (𝐴 ∖ (𝐴𝑥)) = 𝑥)
116, 10eqtr2d 2656 . 2 ((𝑥 ∈ 𝒫 𝐴𝑦 = (𝐴𝑥)) → 𝑥 = (𝐴𝑦))
125, 11jca 554 1 ((𝑥 ∈ 𝒫 𝐴𝑦 = (𝐴𝑥)) → (𝑦 ∈ 𝒫 𝐴𝑥 = (𝐴𝑦)))
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ∧ wa 384   = wceq 1480   ∈ wcel 1987   ∖ cdif 3552   ⊆ wss 3555  𝒫 cpw 4130 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1719  ax-4 1734  ax-5 1836  ax-6 1885  ax-7 1932  ax-9 1996  ax-10 2016  ax-11 2031  ax-12 2044  ax-13 2245  ax-ext 2601 This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-tru 1483  df-ex 1702  df-nf 1707  df-sb 1878  df-clab 2608  df-cleq 2614  df-clel 2617  df-nfc 2750  df-ral 2912  df-rab 2916  df-v 3188  df-dif 3558  df-in 3562  df-ss 3569  df-pw 4132 This theorem is referenced by:  compsscnv  9137
 Copyright terms: Public domain W3C validator