| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > df-1 | Structured version Visualization version GIF version | ||
| Description: Define the complex number 1. (Contributed by NM, 22-Feb-1996.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| df-1 | ⊢ 1 = 〈1R, 0R〉 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | c1 11152 | . 2 class 1 | |
| 2 | c1r 10903 | . . 3 class 1R | |
| 3 | c0r 10902 | . . 3 class 0R | |
| 4 | 2, 3 | cop 4630 | . 2 class 〈1R, 0R〉 |
| 5 | 1, 4 | wceq 1540 | 1 wff 1 = 〈1R, 0R〉 |
| Colors of variables: wff setvar class |
| This definition is referenced by: ax1cn 11185 axi2m1 11195 ax1ne0 11196 ax1rid 11197 axrrecex 11199 |
| Copyright terms: Public domain | W3C validator |