MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  axi2m1 Structured version   Visualization version   GIF version

Theorem axi2m1 9734
Description: i-squared equals -1 (expressed as i-squared plus 1 is 0). Axiom 12 of 22 for real and complex numbers, derived from ZF set theory. This construction-dependent theorem should not be referenced directly; instead, use ax-i2m1 9758. (Contributed by NM, 5-May-1996.) (New usage is discouraged.)
Assertion
Ref Expression
axi2m1 ((i · i) + 1) = 0

Proof of Theorem axi2m1
StepHypRef Expression
1 0r 9655 . . . . . 6 0RR
2 1sr 9656 . . . . . 6 1RR
3 mulcnsr 9711 . . . . . 6 (((0RR ∧ 1RR) ∧ (0RR ∧ 1RR)) → (⟨0R, 1R⟩ · ⟨0R, 1R⟩) = ⟨((0R ·R 0R) +R (-1R ·R (1R ·R 1R))), ((1R ·R 0R) +R (0R ·R 1R))⟩)
41, 2, 1, 2, 3mp4an 704 . . . . 5 (⟨0R, 1R⟩ · ⟨0R, 1R⟩) = ⟨((0R ·R 0R) +R (-1R ·R (1R ·R 1R))), ((1R ·R 0R) +R (0R ·R 1R))⟩
5 00sr 9674 . . . . . . . . 9 (0RR → (0R ·R 0R) = 0R)
61, 5ax-mp 5 . . . . . . . 8 (0R ·R 0R) = 0R
7 1idsr 9673 . . . . . . . . . . 11 (1RR → (1R ·R 1R) = 1R)
82, 7ax-mp 5 . . . . . . . . . 10 (1R ·R 1R) = 1R
98oveq2i 6436 . . . . . . . . 9 (-1R ·R (1R ·R 1R)) = (-1R ·R 1R)
10 m1r 9657 . . . . . . . . . 10 -1RR
11 1idsr 9673 . . . . . . . . . 10 (-1RR → (-1R ·R 1R) = -1R)
1210, 11ax-mp 5 . . . . . . . . 9 (-1R ·R 1R) = -1R
139, 12eqtri 2536 . . . . . . . 8 (-1R ·R (1R ·R 1R)) = -1R
146, 13oveq12i 6437 . . . . . . 7 ((0R ·R 0R) +R (-1R ·R (1R ·R 1R))) = (0R +R -1R)
15 addcomsr 9662 . . . . . . 7 (0R +R -1R) = (-1R +R 0R)
16 0idsr 9672 . . . . . . . 8 (-1RR → (-1R +R 0R) = -1R)
1710, 16ax-mp 5 . . . . . . 7 (-1R +R 0R) = -1R
1814, 15, 173eqtri 2540 . . . . . 6 ((0R ·R 0R) +R (-1R ·R (1R ·R 1R))) = -1R
19 00sr 9674 . . . . . . . . 9 (1RR → (1R ·R 0R) = 0R)
202, 19ax-mp 5 . . . . . . . 8 (1R ·R 0R) = 0R
21 1idsr 9673 . . . . . . . . 9 (0RR → (0R ·R 1R) = 0R)
221, 21ax-mp 5 . . . . . . . 8 (0R ·R 1R) = 0R
2320, 22oveq12i 6437 . . . . . . 7 ((1R ·R 0R) +R (0R ·R 1R)) = (0R +R 0R)
24 0idsr 9672 . . . . . . . 8 (0RR → (0R +R 0R) = 0R)
251, 24ax-mp 5 . . . . . . 7 (0R +R 0R) = 0R
2623, 25eqtri 2536 . . . . . 6 ((1R ·R 0R) +R (0R ·R 1R)) = 0R
2718, 26opeq12i 4243 . . . . 5 ⟨((0R ·R 0R) +R (-1R ·R (1R ·R 1R))), ((1R ·R 0R) +R (0R ·R 1R))⟩ = ⟨-1R, 0R
284, 27eqtri 2536 . . . 4 (⟨0R, 1R⟩ · ⟨0R, 1R⟩) = ⟨-1R, 0R
2928oveq1i 6435 . . 3 ((⟨0R, 1R⟩ · ⟨0R, 1R⟩) + ⟨1R, 0R⟩) = (⟨-1R, 0R⟩ + ⟨1R, 0R⟩)
30 addresr 9713 . . . 4 ((-1RR ∧ 1RR) → (⟨-1R, 0R⟩ + ⟨1R, 0R⟩) = ⟨(-1R +R 1R), 0R⟩)
3110, 2, 30mp2an 703 . . 3 (⟨-1R, 0R⟩ + ⟨1R, 0R⟩) = ⟨(-1R +R 1R), 0R
32 m1p1sr 9667 . . . 4 (-1R +R 1R) = 0R
3332opeq1i 4241 . . 3 ⟨(-1R +R 1R), 0R⟩ = ⟨0R, 0R
3429, 31, 333eqtri 2540 . 2 ((⟨0R, 1R⟩ · ⟨0R, 1R⟩) + ⟨1R, 0R⟩) = ⟨0R, 0R
35 df-i 9699 . . . 4 i = ⟨0R, 1R
3635, 35oveq12i 6437 . . 3 (i · i) = (⟨0R, 1R⟩ · ⟨0R, 1R⟩)
37 df-1 9698 . . 3 1 = ⟨1R, 0R
3836, 37oveq12i 6437 . 2 ((i · i) + 1) = ((⟨0R, 1R⟩ · ⟨0R, 1R⟩) + ⟨1R, 0R⟩)
39 df-0 9697 . 2 0 = ⟨0R, 0R
4034, 38, 393eqtr4i 2546 1 ((i · i) + 1) = 0
Colors of variables: wff setvar class
Syntax hints:   = wceq 1474  wcel 1938  cop 4034  (class class class)co 6425  Rcnr 9441  0Rc0r 9442  1Rc1r 9443  -1Rcm1r 9444   +R cplr 9445   ·R cmr 9446  0cc0 9690  1c1 9691  ici 9692   + caddc 9693   · cmul 9695
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1700  ax-4 1713  ax-5 1793  ax-6 1838  ax-7 1885  ax-8 1940  ax-9 1947  ax-10 1966  ax-11 1971  ax-12 1983  ax-13 2137  ax-ext 2494  ax-sep 4607  ax-nul 4616  ax-pow 4668  ax-pr 4732  ax-un 6722  ax-inf2 8296
This theorem depends on definitions:  df-bi 195  df-or 383  df-an 384  df-3or 1031  df-3an 1032  df-tru 1477  df-ex 1695  df-nf 1699  df-sb 1831  df-eu 2366  df-mo 2367  df-clab 2501  df-cleq 2507  df-clel 2510  df-nfc 2644  df-ne 2686  df-ral 2805  df-rex 2806  df-reu 2807  df-rmo 2808  df-rab 2809  df-v 3079  df-sbc 3307  df-csb 3404  df-dif 3447  df-un 3449  df-in 3451  df-ss 3458  df-pss 3460  df-nul 3778  df-if 3940  df-pw 4013  df-sn 4029  df-pr 4031  df-tp 4033  df-op 4035  df-uni 4271  df-int 4309  df-iun 4355  df-br 4482  df-opab 4542  df-mpt 4543  df-tr 4579  df-eprel 4843  df-id 4847  df-po 4853  df-so 4854  df-fr 4891  df-we 4893  df-xp 4938  df-rel 4939  df-cnv 4940  df-co 4941  df-dm 4942  df-rn 4943  df-res 4944  df-ima 4945  df-pred 5487  df-ord 5533  df-on 5534  df-lim 5535  df-suc 5536  df-iota 5653  df-fun 5691  df-fn 5692  df-f 5693  df-f1 5694  df-fo 5695  df-f1o 5696  df-fv 5697  df-ov 6428  df-oprab 6429  df-mpt2 6430  df-om 6833  df-1st 6933  df-2nd 6934  df-wrecs 7168  df-recs 7230  df-rdg 7268  df-1o 7322  df-oadd 7326  df-omul 7327  df-er 7504  df-ec 7506  df-qs 7510  df-ni 9448  df-pli 9449  df-mi 9450  df-lti 9451  df-plpq 9484  df-mpq 9485  df-ltpq 9486  df-enq 9487  df-nq 9488  df-erq 9489  df-plq 9490  df-mq 9491  df-1nq 9492  df-rq 9493  df-ltnq 9494  df-np 9557  df-1p 9558  df-plp 9559  df-mp 9560  df-ltp 9561  df-enr 9631  df-nr 9632  df-plr 9633  df-mr 9634  df-0r 9636  df-1r 9637  df-m1r 9638  df-c 9696  df-0 9697  df-1 9698  df-i 9699  df-add 9701  df-mul 9702
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator