MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  df-po Structured version   Visualization version   GIF version

Definition df-po 5064
Description: Define the strict partial order predicate. Definition of [Enderton] p. 168. The expression 𝑅 Po 𝐴 means 𝑅 is a partial order on 𝐴. For example, < Po ℝ is true, while ≤ Po ℝ is false (ex-po 27422). (Contributed by NM, 16-Mar-1997.)
Assertion
Ref Expression
df-po (𝑅 Po 𝐴 ↔ ∀𝑥𝐴𝑦𝐴𝑧𝐴𝑥𝑅𝑥 ∧ ((𝑥𝑅𝑦𝑦𝑅𝑧) → 𝑥𝑅𝑧)))
Distinct variable groups:   𝑥,𝑦,𝑧,𝑅   𝑥,𝐴,𝑦,𝑧

Detailed syntax breakdown of Definition df-po
StepHypRef Expression
1 cA . . 3 class 𝐴
2 cR . . 3 class 𝑅
31, 2wpo 5062 . 2 wff 𝑅 Po 𝐴
4 vx . . . . . . . . 9 setvar 𝑥
54cv 1522 . . . . . . . 8 class 𝑥
65, 5, 2wbr 4685 . . . . . . 7 wff 𝑥𝑅𝑥
76wn 3 . . . . . 6 wff ¬ 𝑥𝑅𝑥
8 vy . . . . . . . . . 10 setvar 𝑦
98cv 1522 . . . . . . . . 9 class 𝑦
105, 9, 2wbr 4685 . . . . . . . 8 wff 𝑥𝑅𝑦
11 vz . . . . . . . . . 10 setvar 𝑧
1211cv 1522 . . . . . . . . 9 class 𝑧
139, 12, 2wbr 4685 . . . . . . . 8 wff 𝑦𝑅𝑧
1410, 13wa 383 . . . . . . 7 wff (𝑥𝑅𝑦𝑦𝑅𝑧)
155, 12, 2wbr 4685 . . . . . . 7 wff 𝑥𝑅𝑧
1614, 15wi 4 . . . . . 6 wff ((𝑥𝑅𝑦𝑦𝑅𝑧) → 𝑥𝑅𝑧)
177, 16wa 383 . . . . 5 wff 𝑥𝑅𝑥 ∧ ((𝑥𝑅𝑦𝑦𝑅𝑧) → 𝑥𝑅𝑧))
1817, 11, 1wral 2941 . . . 4 wff 𝑧𝐴𝑥𝑅𝑥 ∧ ((𝑥𝑅𝑦𝑦𝑅𝑧) → 𝑥𝑅𝑧))
1918, 8, 1wral 2941 . . 3 wff 𝑦𝐴𝑧𝐴𝑥𝑅𝑥 ∧ ((𝑥𝑅𝑦𝑦𝑅𝑧) → 𝑥𝑅𝑧))
2019, 4, 1wral 2941 . 2 wff 𝑥𝐴𝑦𝐴𝑧𝐴𝑥𝑅𝑥 ∧ ((𝑥𝑅𝑦𝑦𝑅𝑧) → 𝑥𝑅𝑧))
213, 20wb 196 1 wff (𝑅 Po 𝐴 ↔ ∀𝑥𝐴𝑦𝐴𝑧𝐴𝑥𝑅𝑥 ∧ ((𝑥𝑅𝑦𝑦𝑅𝑧) → 𝑥𝑅𝑧)))
Colors of variables: wff setvar class
This definition is referenced by:  poss  5066  poeq1  5067  nfpo  5069  pocl  5071  ispod  5072  po0  5079  poinxp  5216  posn  5221  cnvpo  5711  isopolem  6635  porpss  6983  dfwe2  7023  poxp  7334  dfso3  31727  dfpo2  31771  elpotr  31810  poseq  31878
  Copyright terms: Public domain W3C validator