MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dfif3 Structured version   Visualization version   GIF version

Theorem dfif3 4481
Description: Alternate definition of the conditional operator df-if 4468. Note that 𝜑 is independent of 𝑥 i.e. a constant true or false. (Contributed by NM, 25-Aug-2013.) (Revised by Mario Carneiro, 8-Sep-2013.)
Hypothesis
Ref Expression
dfif3.1 𝐶 = {𝑥𝜑}
Assertion
Ref Expression
dfif3 if(𝜑, 𝐴, 𝐵) = ((𝐴𝐶) ∪ (𝐵 ∩ (V ∖ 𝐶)))
Distinct variable group:   𝜑,𝑥
Allowed substitution hints:   𝐴(𝑥)   𝐵(𝑥)   𝐶(𝑥)

Proof of Theorem dfif3
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 dfif6 4470 . 2 if(𝜑, 𝐴, 𝐵) = ({𝑦𝐴𝜑} ∪ {𝑦𝐵 ∣ ¬ 𝜑})
2 dfif3.1 . . . . . 6 𝐶 = {𝑥𝜑}
3 biidd 264 . . . . . . 7 (𝑥 = 𝑦 → (𝜑𝜑))
43cbvabv 2889 . . . . . 6 {𝑥𝜑} = {𝑦𝜑}
52, 4eqtri 2844 . . . . 5 𝐶 = {𝑦𝜑}
65ineq2i 4186 . . . 4 (𝐴𝐶) = (𝐴 ∩ {𝑦𝜑})
7 dfrab3 4278 . . . 4 {𝑦𝐴𝜑} = (𝐴 ∩ {𝑦𝜑})
86, 7eqtr4i 2847 . . 3 (𝐴𝐶) = {𝑦𝐴𝜑}
9 dfrab3 4278 . . . 4 {𝑦𝐵 ∣ ¬ 𝜑} = (𝐵 ∩ {𝑦 ∣ ¬ 𝜑})
10 notab 4273 . . . . . 6 {𝑦 ∣ ¬ 𝜑} = (V ∖ {𝑦𝜑})
115difeq2i 4096 . . . . . 6 (V ∖ 𝐶) = (V ∖ {𝑦𝜑})
1210, 11eqtr4i 2847 . . . . 5 {𝑦 ∣ ¬ 𝜑} = (V ∖ 𝐶)
1312ineq2i 4186 . . . 4 (𝐵 ∩ {𝑦 ∣ ¬ 𝜑}) = (𝐵 ∩ (V ∖ 𝐶))
149, 13eqtr2i 2845 . . 3 (𝐵 ∩ (V ∖ 𝐶)) = {𝑦𝐵 ∣ ¬ 𝜑}
158, 14uneq12i 4137 . 2 ((𝐴𝐶) ∪ (𝐵 ∩ (V ∖ 𝐶))) = ({𝑦𝐴𝜑} ∪ {𝑦𝐵 ∣ ¬ 𝜑})
161, 15eqtr4i 2847 1 if(𝜑, 𝐴, 𝐵) = ((𝐴𝐶) ∪ (𝐵 ∩ (V ∖ 𝐶)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3   = wceq 1537  {cab 2799  {crab 3142  Vcvv 3494  cdif 3933  cun 3934  cin 3935  ifcif 4467
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2793
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-tru 1540  df-ex 1781  df-nf 1785  df-sb 2070  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-rab 3147  df-v 3496  df-dif 3939  df-un 3941  df-in 3943  df-if 4468
This theorem is referenced by:  dfif4  4482
  Copyright terms: Public domain W3C validator