MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dfsb2 Structured version   Visualization version   GIF version

Theorem dfsb2 2265
Description: An alternate definition of proper substitution that, like df-sb 1831, mixes free and bound variables to avoid distinct variable requirements. (Contributed by NM, 17-Feb-2005.)
Assertion
Ref Expression
dfsb2 ([𝑦 / 𝑥]𝜑 ↔ ((𝑥 = 𝑦𝜑) ∨ ∀𝑥(𝑥 = 𝑦𝜑)))

Proof of Theorem dfsb2
StepHypRef Expression
1 sp 1990 . . . 4 (∀𝑥 𝑥 = 𝑦𝑥 = 𝑦)
2 sbequ2 1832 . . . . 5 (𝑥 = 𝑦 → ([𝑦 / 𝑥]𝜑𝜑))
32sps 1996 . . . 4 (∀𝑥 𝑥 = 𝑦 → ([𝑦 / 𝑥]𝜑𝜑))
4 orc 398 . . . 4 ((𝑥 = 𝑦𝜑) → ((𝑥 = 𝑦𝜑) ∨ ∀𝑥(𝑥 = 𝑦𝜑)))
51, 3, 4syl6an 565 . . 3 (∀𝑥 𝑥 = 𝑦 → ([𝑦 / 𝑥]𝜑 → ((𝑥 = 𝑦𝜑) ∨ ∀𝑥(𝑥 = 𝑦𝜑))))
6 sb4 2248 . . . 4 (¬ ∀𝑥 𝑥 = 𝑦 → ([𝑦 / 𝑥]𝜑 → ∀𝑥(𝑥 = 𝑦𝜑)))
7 olc 397 . . . 4 (∀𝑥(𝑥 = 𝑦𝜑) → ((𝑥 = 𝑦𝜑) ∨ ∀𝑥(𝑥 = 𝑦𝜑)))
86, 7syl6 34 . . 3 (¬ ∀𝑥 𝑥 = 𝑦 → ([𝑦 / 𝑥]𝜑 → ((𝑥 = 𝑦𝜑) ∨ ∀𝑥(𝑥 = 𝑦𝜑))))
95, 8pm2.61i 174 . 2 ([𝑦 / 𝑥]𝜑 → ((𝑥 = 𝑦𝜑) ∨ ∀𝑥(𝑥 = 𝑦𝜑)))
10 sbequ1 2129 . . . 4 (𝑥 = 𝑦 → (𝜑 → [𝑦 / 𝑥]𝜑))
1110imp 443 . . 3 ((𝑥 = 𝑦𝜑) → [𝑦 / 𝑥]𝜑)
12 sb2 2244 . . 3 (∀𝑥(𝑥 = 𝑦𝜑) → [𝑦 / 𝑥]𝜑)
1311, 12jaoi 392 . 2 (((𝑥 = 𝑦𝜑) ∨ ∀𝑥(𝑥 = 𝑦𝜑)) → [𝑦 / 𝑥]𝜑)
149, 13impbii 197 1 ([𝑦 / 𝑥]𝜑 ↔ ((𝑥 = 𝑦𝜑) ∨ ∀𝑥(𝑥 = 𝑦𝜑)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 194  wo 381  wa 382  wal 1472  [wsb 1830
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1700  ax-4 1713  ax-5 1793  ax-6 1838  ax-7 1885  ax-10 1966  ax-12 1983  ax-13 2137
This theorem depends on definitions:  df-bi 195  df-or 383  df-an 384  df-ex 1695  df-nf 1699  df-sb 1831
This theorem is referenced by:  dfsb3  2266
  Copyright terms: Public domain W3C validator