Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  eqdif Structured version   Visualization version   GIF version

Theorem eqdif 30281
Description: If both set differences of two sets are empty, those sets are equal. (Contributed by Thierry Arnoux, 16-Nov-2023.)
Assertion
Ref Expression
eqdif (((𝐴𝐵) = ∅ ∧ (𝐵𝐴) = ∅) → 𝐴 = 𝐵)

Proof of Theorem eqdif
StepHypRef Expression
1 eqss 3975 . 2 (𝐴 = 𝐵 ↔ (𝐴𝐵𝐵𝐴))
2 ssdif0 4316 . . 3 (𝐴𝐵 ↔ (𝐴𝐵) = ∅)
3 ssdif0 4316 . . 3 (𝐵𝐴 ↔ (𝐵𝐴) = ∅)
42, 3anbi12i 628 . 2 ((𝐴𝐵𝐵𝐴) ↔ ((𝐴𝐵) = ∅ ∧ (𝐵𝐴) = ∅))
51, 4sylbbr 238 1 (((𝐴𝐵) = ∅ ∧ (𝐵𝐴) = ∅) → 𝐴 = 𝐵)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 398   = wceq 1536  cdif 3926  wss 3929  c0 4284
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1969  ax-7 2014  ax-8 2115  ax-9 2123  ax-10 2144  ax-11 2160  ax-12 2176  ax-ext 2792
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-tru 1539  df-ex 1780  df-nf 1784  df-sb 2069  df-clab 2799  df-cleq 2813  df-clel 2892  df-nfc 2962  df-v 3493  df-dif 3932  df-in 3936  df-ss 3945  df-nul 4285
This theorem is referenced by:  pmtrcnelor  30756
  Copyright terms: Public domain W3C validator