Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  pmtrcnelor Structured version   Visualization version   GIF version

Theorem pmtrcnelor 30756
Description: Composing a permutation 𝐹 with a transposition which results in moving one or two less points. (Contributed by Thierry Arnoux, 16-Nov-2023.)
Hypotheses
Ref Expression
pmtrcnel.s 𝑆 = (SymGrp‘𝐷)
pmtrcnel.t 𝑇 = (pmTrsp‘𝐷)
pmtrcnel.b 𝐵 = (Base‘𝑆)
pmtrcnel.j 𝐽 = (𝐹𝐼)
pmtrcnel.d (𝜑𝐷𝑉)
pmtrcnel.f (𝜑𝐹𝐵)
pmtrcnel.i (𝜑𝐼 ∈ dom (𝐹 ∖ I ))
pmtrcnel.e 𝐸 = dom (𝐹 ∖ I )
pmtrcnel.a 𝐴 = dom (((𝑇‘{𝐼, 𝐽}) ∘ 𝐹) ∖ I )
Assertion
Ref Expression
pmtrcnelor (𝜑 → (𝐴 = (𝐸 ∖ {𝐼, 𝐽}) ∨ 𝐴 = (𝐸 ∖ {𝐼})))

Proof of Theorem pmtrcnelor
StepHypRef Expression
1 pmtrcnel.s . . . . . . 7 𝑆 = (SymGrp‘𝐷)
2 pmtrcnel.t . . . . . . 7 𝑇 = (pmTrsp‘𝐷)
3 pmtrcnel.b . . . . . . 7 𝐵 = (Base‘𝑆)
4 pmtrcnel.j . . . . . . 7 𝐽 = (𝐹𝐼)
5 pmtrcnel.d . . . . . . 7 (𝜑𝐷𝑉)
6 pmtrcnel.f . . . . . . 7 (𝜑𝐹𝐵)
7 pmtrcnel.i . . . . . . 7 (𝜑𝐼 ∈ dom (𝐹 ∖ I ))
81, 2, 3, 4, 5, 6, 7pmtrcnel 30754 . . . . . 6 (𝜑 → dom (((𝑇‘{𝐼, 𝐽}) ∘ 𝐹) ∖ I ) ⊆ (dom (𝐹 ∖ I ) ∖ {𝐼}))
9 pmtrcnel.a . . . . . 6 𝐴 = dom (((𝑇‘{𝐼, 𝐽}) ∘ 𝐹) ∖ I )
10 pmtrcnel.e . . . . . . 7 𝐸 = dom (𝐹 ∖ I )
1110difeq1i 4088 . . . . . 6 (𝐸 ∖ {𝐼}) = (dom (𝐹 ∖ I ) ∖ {𝐼})
128, 9, 113sstr4g 4005 . . . . 5 (𝜑𝐴 ⊆ (𝐸 ∖ {𝐼}))
1312ssdifd 4110 . . . 4 (𝜑 → (𝐴 ∖ (𝐸 ∖ {𝐼, 𝐽})) ⊆ ((𝐸 ∖ {𝐼}) ∖ (𝐸 ∖ {𝐼, 𝐽})))
14 difpr 4729 . . . . . 6 (𝐸 ∖ {𝐼, 𝐽}) = ((𝐸 ∖ {𝐼}) ∖ {𝐽})
1514difeq2i 4089 . . . . 5 ((𝐸 ∖ {𝐼}) ∖ (𝐸 ∖ {𝐼, 𝐽})) = ((𝐸 ∖ {𝐼}) ∖ ((𝐸 ∖ {𝐼}) ∖ {𝐽}))
161, 3symgbasf1o 18498 . . . . . . . . . . . . 13 (𝐹𝐵𝐹:𝐷1-1-onto𝐷)
176, 16syl 17 . . . . . . . . . . . 12 (𝜑𝐹:𝐷1-1-onto𝐷)
18 f1omvdmvd 18566 . . . . . . . . . . . 12 ((𝐹:𝐷1-1-onto𝐷𝐼 ∈ dom (𝐹 ∖ I )) → (𝐹𝐼) ∈ (dom (𝐹 ∖ I ) ∖ {𝐼}))
1917, 7, 18syl2anc 586 . . . . . . . . . . 11 (𝜑 → (𝐹𝐼) ∈ (dom (𝐹 ∖ I ) ∖ {𝐼}))
204, 19eqeltrid 2916 . . . . . . . . . 10 (𝜑𝐽 ∈ (dom (𝐹 ∖ I ) ∖ {𝐼}))
2120eldifad 3941 . . . . . . . . 9 (𝜑𝐽 ∈ dom (𝐹 ∖ I ))
2221, 10eleqtrrdi 2923 . . . . . . . 8 (𝜑𝐽𝐸)
234a1i 11 . . . . . . . . 9 (𝜑𝐽 = (𝐹𝐼))
24 f1of 6608 . . . . . . . . . . . 12 (𝐹:𝐷1-1-onto𝐷𝐹:𝐷𝐷)
2517, 24syl 17 . . . . . . . . . . 11 (𝜑𝐹:𝐷𝐷)
2625ffnd 6508 . . . . . . . . . 10 (𝜑𝐹 Fn 𝐷)
27 difss 4101 . . . . . . . . . . . . 13 (𝐹 ∖ I ) ⊆ 𝐹
28 dmss 5764 . . . . . . . . . . . . 13 ((𝐹 ∖ I ) ⊆ 𝐹 → dom (𝐹 ∖ I ) ⊆ dom 𝐹)
2927, 28ax-mp 5 . . . . . . . . . . . 12 dom (𝐹 ∖ I ) ⊆ dom 𝐹
3029, 7sseldi 3958 . . . . . . . . . . 11 (𝜑𝐼 ∈ dom 𝐹)
3125fdmd 6516 . . . . . . . . . . 11 (𝜑 → dom 𝐹 = 𝐷)
3230, 31eleqtrd 2914 . . . . . . . . . 10 (𝜑𝐼𝐷)
33 fnelnfp 6932 . . . . . . . . . . 11 ((𝐹 Fn 𝐷𝐼𝐷) → (𝐼 ∈ dom (𝐹 ∖ I ) ↔ (𝐹𝐼) ≠ 𝐼))
3433biimpa 479 . . . . . . . . . 10 (((𝐹 Fn 𝐷𝐼𝐷) ∧ 𝐼 ∈ dom (𝐹 ∖ I )) → (𝐹𝐼) ≠ 𝐼)
3526, 32, 7, 34syl21anc 835 . . . . . . . . 9 (𝜑 → (𝐹𝐼) ≠ 𝐼)
3623, 35eqnetrd 3082 . . . . . . . 8 (𝜑𝐽𝐼)
37 eldifsn 4712 . . . . . . . 8 (𝐽 ∈ (𝐸 ∖ {𝐼}) ↔ (𝐽𝐸𝐽𝐼))
3822, 36, 37sylanbrc 585 . . . . . . 7 (𝜑𝐽 ∈ (𝐸 ∖ {𝐼}))
3938snssd 4735 . . . . . 6 (𝜑 → {𝐽} ⊆ (𝐸 ∖ {𝐼}))
40 dfss4 4228 . . . . . 6 ({𝐽} ⊆ (𝐸 ∖ {𝐼}) ↔ ((𝐸 ∖ {𝐼}) ∖ ((𝐸 ∖ {𝐼}) ∖ {𝐽})) = {𝐽})
4139, 40sylib 220 . . . . 5 (𝜑 → ((𝐸 ∖ {𝐼}) ∖ ((𝐸 ∖ {𝐼}) ∖ {𝐽})) = {𝐽})
4215, 41syl5eq 2867 . . . 4 (𝜑 → ((𝐸 ∖ {𝐼}) ∖ (𝐸 ∖ {𝐼, 𝐽})) = {𝐽})
4313, 42sseqtrd 4000 . . 3 (𝜑 → (𝐴 ∖ (𝐸 ∖ {𝐼, 𝐽})) ⊆ {𝐽})
44 sssn 4752 . . 3 ((𝐴 ∖ (𝐸 ∖ {𝐼, 𝐽})) ⊆ {𝐽} ↔ ((𝐴 ∖ (𝐸 ∖ {𝐼, 𝐽})) = ∅ ∨ (𝐴 ∖ (𝐸 ∖ {𝐼, 𝐽})) = {𝐽}))
4543, 44sylib 220 . 2 (𝜑 → ((𝐴 ∖ (𝐸 ∖ {𝐼, 𝐽})) = ∅ ∨ (𝐴 ∖ (𝐸 ∖ {𝐼, 𝐽})) = {𝐽}))
46 simpr 487 . . . . 5 ((𝜑 ∧ (𝐴 ∖ (𝐸 ∖ {𝐼, 𝐽})) = ∅) → (𝐴 ∖ (𝐸 ∖ {𝐼, 𝐽})) = ∅)
471, 2, 3, 4, 5, 6, 7pmtrcnel2 30755 . . . . . . . 8 (𝜑 → (dom (𝐹 ∖ I ) ∖ {𝐼, 𝐽}) ⊆ dom (((𝑇‘{𝐼, 𝐽}) ∘ 𝐹) ∖ I ))
4810difeq1i 4088 . . . . . . . 8 (𝐸 ∖ {𝐼, 𝐽}) = (dom (𝐹 ∖ I ) ∖ {𝐼, 𝐽})
4947, 48, 93sstr4g 4005 . . . . . . 7 (𝜑 → (𝐸 ∖ {𝐼, 𝐽}) ⊆ 𝐴)
50 ssdif0 4316 . . . . . . 7 ((𝐸 ∖ {𝐼, 𝐽}) ⊆ 𝐴 ↔ ((𝐸 ∖ {𝐼, 𝐽}) ∖ 𝐴) = ∅)
5149, 50sylib 220 . . . . . 6 (𝜑 → ((𝐸 ∖ {𝐼, 𝐽}) ∖ 𝐴) = ∅)
5251adantr 483 . . . . 5 ((𝜑 ∧ (𝐴 ∖ (𝐸 ∖ {𝐼, 𝐽})) = ∅) → ((𝐸 ∖ {𝐼, 𝐽}) ∖ 𝐴) = ∅)
53 eqdif 30281 . . . . 5 (((𝐴 ∖ (𝐸 ∖ {𝐼, 𝐽})) = ∅ ∧ ((𝐸 ∖ {𝐼, 𝐽}) ∖ 𝐴) = ∅) → 𝐴 = (𝐸 ∖ {𝐼, 𝐽}))
5446, 52, 53syl2anc 586 . . . 4 ((𝜑 ∧ (𝐴 ∖ (𝐸 ∖ {𝐼, 𝐽})) = ∅) → 𝐴 = (𝐸 ∖ {𝐼, 𝐽}))
5554ex 415 . . 3 (𝜑 → ((𝐴 ∖ (𝐸 ∖ {𝐼, 𝐽})) = ∅ → 𝐴 = (𝐸 ∖ {𝐼, 𝐽})))
5612adantr 483 . . . . 5 ((𝜑 ∧ (𝐴 ∖ (𝐸 ∖ {𝐼, 𝐽})) = {𝐽}) → 𝐴 ⊆ (𝐸 ∖ {𝐼}))
5714, 49eqsstrrid 4009 . . . . . . . 8 (𝜑 → ((𝐸 ∖ {𝐼}) ∖ {𝐽}) ⊆ 𝐴)
5857adantr 483 . . . . . . 7 ((𝜑 ∧ (𝐴 ∖ (𝐸 ∖ {𝐼, 𝐽})) = {𝐽}) → ((𝐸 ∖ {𝐼}) ∖ {𝐽}) ⊆ 𝐴)
59 ssundif 4426 . . . . . . 7 ((𝐸 ∖ {𝐼}) ⊆ ({𝐽} ∪ 𝐴) ↔ ((𝐸 ∖ {𝐼}) ∖ {𝐽}) ⊆ 𝐴)
6058, 59sylibr 236 . . . . . 6 ((𝜑 ∧ (𝐴 ∖ (𝐸 ∖ {𝐼, 𝐽})) = {𝐽}) → (𝐸 ∖ {𝐼}) ⊆ ({𝐽} ∪ 𝐴))
61 ssidd 3983 . . . . . . . . 9 ((𝜑 ∧ (𝐴 ∖ (𝐸 ∖ {𝐼, 𝐽})) = {𝐽}) → {𝐽} ⊆ {𝐽})
62 simpr 487 . . . . . . . . 9 ((𝜑 ∧ (𝐴 ∖ (𝐸 ∖ {𝐼, 𝐽})) = {𝐽}) → (𝐴 ∖ (𝐸 ∖ {𝐼, 𝐽})) = {𝐽})
6361, 62sseqtrrd 4001 . . . . . . . 8 ((𝜑 ∧ (𝐴 ∖ (𝐸 ∖ {𝐼, 𝐽})) = {𝐽}) → {𝐽} ⊆ (𝐴 ∖ (𝐸 ∖ {𝐼, 𝐽})))
6463difss2d 4104 . . . . . . 7 ((𝜑 ∧ (𝐴 ∖ (𝐸 ∖ {𝐼, 𝐽})) = {𝐽}) → {𝐽} ⊆ 𝐴)
65 ssequn1 4149 . . . . . . 7 ({𝐽} ⊆ 𝐴 ↔ ({𝐽} ∪ 𝐴) = 𝐴)
6664, 65sylib 220 . . . . . 6 ((𝜑 ∧ (𝐴 ∖ (𝐸 ∖ {𝐼, 𝐽})) = {𝐽}) → ({𝐽} ∪ 𝐴) = 𝐴)
6760, 66sseqtrd 4000 . . . . 5 ((𝜑 ∧ (𝐴 ∖ (𝐸 ∖ {𝐼, 𝐽})) = {𝐽}) → (𝐸 ∖ {𝐼}) ⊆ 𝐴)
6856, 67eqssd 3977 . . . 4 ((𝜑 ∧ (𝐴 ∖ (𝐸 ∖ {𝐼, 𝐽})) = {𝐽}) → 𝐴 = (𝐸 ∖ {𝐼}))
6968ex 415 . . 3 (𝜑 → ((𝐴 ∖ (𝐸 ∖ {𝐼, 𝐽})) = {𝐽} → 𝐴 = (𝐸 ∖ {𝐼})))
7055, 69orim12d 961 . 2 (𝜑 → (((𝐴 ∖ (𝐸 ∖ {𝐼, 𝐽})) = ∅ ∨ (𝐴 ∖ (𝐸 ∖ {𝐼, 𝐽})) = {𝐽}) → (𝐴 = (𝐸 ∖ {𝐼, 𝐽}) ∨ 𝐴 = (𝐸 ∖ {𝐼}))))
7145, 70mpd 15 1 (𝜑 → (𝐴 = (𝐸 ∖ {𝐼, 𝐽}) ∨ 𝐴 = (𝐸 ∖ {𝐼})))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 398  wo 843   = wceq 1536  wcel 2113  wne 3015  cdif 3926  cun 3927  wss 3929  c0 4284  {csn 4560  {cpr 4562   I cid 5452  dom cdm 5548  ccom 5552   Fn wfn 6343  wf 6344  1-1-ontowf1o 6347  cfv 6348  Basecbs 16478  SymGrpcsymg 18490  pmTrspcpmtr 18564
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1969  ax-7 2014  ax-8 2115  ax-9 2123  ax-10 2144  ax-11 2160  ax-12 2176  ax-ext 2792  ax-rep 5183  ax-sep 5196  ax-nul 5203  ax-pow 5259  ax-pr 5323  ax-un 7454  ax-cnex 10586  ax-resscn 10587  ax-1cn 10588  ax-icn 10589  ax-addcl 10590  ax-addrcl 10591  ax-mulcl 10592  ax-mulrcl 10593  ax-mulcom 10594  ax-addass 10595  ax-mulass 10596  ax-distr 10597  ax-i2m1 10598  ax-1ne0 10599  ax-1rid 10600  ax-rnegex 10601  ax-rrecex 10602  ax-cnre 10603  ax-pre-lttri 10604  ax-pre-lttrn 10605  ax-pre-ltadd 10606  ax-pre-mulgt0 10607
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1083  df-3an 1084  df-tru 1539  df-ex 1780  df-nf 1784  df-sb 2069  df-mo 2621  df-eu 2653  df-clab 2799  df-cleq 2813  df-clel 2892  df-nfc 2962  df-ne 3016  df-nel 3123  df-ral 3142  df-rex 3143  df-reu 3144  df-rab 3146  df-v 3493  df-sbc 3769  df-csb 3877  df-dif 3932  df-un 3934  df-in 3936  df-ss 3945  df-pss 3947  df-nul 4285  df-if 4461  df-pw 4534  df-sn 4561  df-pr 4563  df-tp 4565  df-op 4567  df-uni 4832  df-int 4870  df-iun 4914  df-br 5060  df-opab 5122  df-mpt 5140  df-tr 5166  df-id 5453  df-eprel 5458  df-po 5467  df-so 5468  df-fr 5507  df-we 5509  df-xp 5554  df-rel 5555  df-cnv 5556  df-co 5557  df-dm 5558  df-rn 5559  df-res 5560  df-ima 5561  df-pred 6141  df-ord 6187  df-on 6188  df-lim 6189  df-suc 6190  df-iota 6307  df-fun 6350  df-fn 6351  df-f 6352  df-f1 6353  df-fo 6354  df-f1o 6355  df-fv 6356  df-riota 7107  df-ov 7152  df-oprab 7153  df-mpo 7154  df-om 7574  df-1st 7682  df-2nd 7683  df-wrecs 7940  df-recs 8001  df-rdg 8039  df-1o 8095  df-2o 8096  df-oadd 8099  df-er 8282  df-map 8401  df-en 8503  df-dom 8504  df-sdom 8505  df-fin 8506  df-pnf 10670  df-mnf 10671  df-xr 10672  df-ltxr 10673  df-le 10674  df-sub 10865  df-neg 10866  df-nn 11632  df-2 11694  df-3 11695  df-4 11696  df-5 11697  df-6 11698  df-7 11699  df-8 11700  df-9 11701  df-n0 11892  df-z 11976  df-uz 12238  df-fz 12890  df-struct 16480  df-ndx 16481  df-slot 16482  df-base 16484  df-sets 16485  df-ress 16486  df-plusg 16573  df-tset 16579  df-efmnd 18029  df-symg 18491  df-pmtr 18565
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator