MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  eqneltrrd Structured version   Visualization version   GIF version

Theorem eqneltrrd 2933
Description: If a class is not an element of another class, an equal class is also not an element. Deduction form. (Contributed by David Moews, 1-May-2017.) (Proof shortened by Wolf Lammen, 13-Nov-2019.)
Hypotheses
Ref Expression
eqneltrrd.1 (𝜑𝐴 = 𝐵)
eqneltrrd.2 (𝜑 → ¬ 𝐴𝐶)
Assertion
Ref Expression
eqneltrrd (𝜑 → ¬ 𝐵𝐶)

Proof of Theorem eqneltrrd
StepHypRef Expression
1 eqneltrrd.1 . . 3 (𝜑𝐴 = 𝐵)
21eqcomd 2827 . 2 (𝜑𝐵 = 𝐴)
3 eqneltrrd.2 . 2 (𝜑 → ¬ 𝐴𝐶)
42, 3eqneltrd 2932 1 (𝜑 → ¬ 𝐵𝐶)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4   = wceq 1537  wcel 2114
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-ext 2793
This theorem depends on definitions:  df-bi 209  df-an 399  df-ex 1781  df-cleq 2814  df-clel 2893
This theorem is referenced by:  bitsf1  15795  lssvancl2  19717  lbsind2  19853  lindfind2  20962  2atjlej  36630  2atnelvolN  36738  lmod1zrnlvec  44569
  Copyright terms: Public domain W3C validator