MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  lssvancl2 Structured version   Visualization version   GIF version

Theorem lssvancl2 18713
Description: Non-closure: if one vector belongs to a subspace but another does not, their sum does not belong. Useful for obtaining a new vector not in a subspace. (Contributed by NM, 20-May-2015.)
Hypotheses
Ref Expression
lssvancl.v 𝑉 = (Base‘𝑊)
lssvancl.p + = (+g𝑊)
lssvancl.s 𝑆 = (LSubSp‘𝑊)
lssvancl.w (𝜑𝑊 ∈ LMod)
lssvancl.u (𝜑𝑈𝑆)
lssvancl.x (𝜑𝑋𝑈)
lssvancl.y (𝜑𝑌𝑉)
lssvancl.n (𝜑 → ¬ 𝑌𝑈)
Assertion
Ref Expression
lssvancl2 (𝜑 → ¬ (𝑌 + 𝑋) ∈ 𝑈)

Proof of Theorem lssvancl2
StepHypRef Expression
1 lssvancl.w . . 3 (𝜑𝑊 ∈ LMod)
2 lssvancl.u . . . 4 (𝜑𝑈𝑆)
3 lssvancl.x . . . 4 (𝜑𝑋𝑈)
4 lssvancl.v . . . . 5 𝑉 = (Base‘𝑊)
5 lssvancl.s . . . . 5 𝑆 = (LSubSp‘𝑊)
64, 5lssel 18705 . . . 4 ((𝑈𝑆𝑋𝑈) → 𝑋𝑉)
72, 3, 6syl2anc 690 . . 3 (𝜑𝑋𝑉)
8 lssvancl.y . . 3 (𝜑𝑌𝑉)
9 lssvancl.p . . . 4 + = (+g𝑊)
104, 9lmodcom 18678 . . 3 ((𝑊 ∈ LMod ∧ 𝑋𝑉𝑌𝑉) → (𝑋 + 𝑌) = (𝑌 + 𝑋))
111, 7, 8, 10syl3anc 1317 . 2 (𝜑 → (𝑋 + 𝑌) = (𝑌 + 𝑋))
12 lssvancl.n . . 3 (𝜑 → ¬ 𝑌𝑈)
134, 9, 5, 1, 2, 3, 8, 12lssvancl1 18712 . 2 (𝜑 → ¬ (𝑋 + 𝑌) ∈ 𝑈)
1411, 13eqneltrrd 2707 1 (𝜑 → ¬ (𝑌 + 𝑋) ∈ 𝑈)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4   = wceq 1474  wcel 1976  cfv 5790  (class class class)co 6527  Basecbs 15641  +gcplusg 15714  LModclmod 18632  LSubSpclss 18699
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1712  ax-4 1727  ax-5 1826  ax-6 1874  ax-7 1921  ax-8 1978  ax-9 1985  ax-10 2005  ax-11 2020  ax-12 2032  ax-13 2232  ax-ext 2589  ax-rep 4693  ax-sep 4703  ax-nul 4712  ax-pow 4764  ax-pr 4828  ax-un 6824  ax-cnex 9848  ax-resscn 9849  ax-1cn 9850  ax-icn 9851  ax-addcl 9852  ax-addrcl 9853  ax-mulcl 9854  ax-mulrcl 9855  ax-mulcom 9856  ax-addass 9857  ax-mulass 9858  ax-distr 9859  ax-i2m1 9860  ax-1ne0 9861  ax-1rid 9862  ax-rnegex 9863  ax-rrecex 9864  ax-cnre 9865  ax-pre-lttri 9866  ax-pre-lttrn 9867  ax-pre-ltadd 9868  ax-pre-mulgt0 9869
This theorem depends on definitions:  df-bi 195  df-or 383  df-an 384  df-3or 1031  df-3an 1032  df-tru 1477  df-ex 1695  df-nf 1700  df-sb 1867  df-eu 2461  df-mo 2462  df-clab 2596  df-cleq 2602  df-clel 2605  df-nfc 2739  df-ne 2781  df-nel 2782  df-ral 2900  df-rex 2901  df-reu 2902  df-rmo 2903  df-rab 2904  df-v 3174  df-sbc 3402  df-csb 3499  df-dif 3542  df-un 3544  df-in 3546  df-ss 3553  df-pss 3555  df-nul 3874  df-if 4036  df-pw 4109  df-sn 4125  df-pr 4127  df-tp 4129  df-op 4131  df-uni 4367  df-iun 4451  df-br 4578  df-opab 4638  df-mpt 4639  df-tr 4675  df-eprel 4939  df-id 4943  df-po 4949  df-so 4950  df-fr 4987  df-we 4989  df-xp 5034  df-rel 5035  df-cnv 5036  df-co 5037  df-dm 5038  df-rn 5039  df-res 5040  df-ima 5041  df-pred 5583  df-ord 5629  df-on 5630  df-lim 5631  df-suc 5632  df-iota 5754  df-fun 5792  df-fn 5793  df-f 5794  df-f1 5795  df-fo 5796  df-f1o 5797  df-fv 5798  df-riota 6489  df-ov 6530  df-oprab 6531  df-mpt2 6532  df-om 6935  df-1st 7036  df-2nd 7037  df-wrecs 7271  df-recs 7332  df-rdg 7370  df-er 7606  df-en 7819  df-dom 7820  df-sdom 7821  df-pnf 9932  df-mnf 9933  df-xr 9934  df-ltxr 9935  df-le 9936  df-sub 10119  df-neg 10120  df-nn 10868  df-2 10926  df-ndx 15644  df-slot 15645  df-base 15646  df-sets 15647  df-plusg 15727  df-0g 15871  df-mgm 17011  df-sgrp 17053  df-mnd 17064  df-grp 17194  df-minusg 17195  df-sbg 17196  df-cmn 17964  df-abl 17965  df-mgp 18259  df-ur 18271  df-ring 18318  df-lmod 18634  df-lss 18700
This theorem is referenced by:  dvh3dim2  35558  dvh3dim3N  35559  hdmap11lem2  35955  hdmaprnlem3N  35963
  Copyright terms: Public domain W3C validator