Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  lmod1zrnlvec Structured version   Visualization version   GIF version

Theorem lmod1zrnlvec 42099
Description: There is a (left) module (a zero module) which is not a (left) vector space. (Contributed by AV, 29-Apr-2019.)
Hypotheses
Ref Expression
lmod1zr.r 𝑅 = {⟨(Base‘ndx), {𝑍}⟩, ⟨(+g‘ndx), {⟨⟨𝑍, 𝑍⟩, 𝑍⟩}⟩, ⟨(.r‘ndx), {⟨⟨𝑍, 𝑍⟩, 𝑍⟩}⟩}
lmod1zr.m 𝑀 = ({⟨(Base‘ndx), {𝐼}⟩, ⟨(+g‘ndx), {⟨⟨𝐼, 𝐼⟩, 𝐼⟩}⟩, ⟨(Scalar‘ndx), 𝑅⟩} ∪ {⟨( ·𝑠 ‘ndx), {⟨⟨𝑍, 𝐼⟩, 𝐼⟩}⟩})
Assertion
Ref Expression
lmod1zrnlvec ((𝐼𝑉𝑍𝑊) → 𝑀 ∉ LVec)

Proof of Theorem lmod1zrnlvec
StepHypRef Expression
1 lmod1zr.r . . . . . 6 𝑅 = {⟨(Base‘ndx), {𝑍}⟩, ⟨(+g‘ndx), {⟨⟨𝑍, 𝑍⟩, 𝑍⟩}⟩, ⟨(.r‘ndx), {⟨⟨𝑍, 𝑍⟩, 𝑍⟩}⟩}
2 tpex 6833 . . . . . 6 {⟨(Base‘ndx), {𝑍}⟩, ⟨(+g‘ndx), {⟨⟨𝑍, 𝑍⟩, 𝑍⟩}⟩, ⟨(.r‘ndx), {⟨⟨𝑍, 𝑍⟩, 𝑍⟩}⟩} ∈ V
31, 2eqeltri 2683 . . . . 5 𝑅 ∈ V
4 lmod1zr.m . . . . . 6 𝑀 = ({⟨(Base‘ndx), {𝐼}⟩, ⟨(+g‘ndx), {⟨⟨𝐼, 𝐼⟩, 𝐼⟩}⟩, ⟨(Scalar‘ndx), 𝑅⟩} ∪ {⟨( ·𝑠 ‘ndx), {⟨⟨𝑍, 𝐼⟩, 𝐼⟩}⟩})
54lmodsca 15792 . . . . 5 (𝑅 ∈ V → 𝑅 = (Scalar‘𝑀))
63, 5mp1i 13 . . . 4 ((𝐼𝑉𝑍𝑊) → 𝑅 = (Scalar‘𝑀))
71rng1nnzr 19044 . . . . . . 7 (𝑍𝑊𝑅 ∉ NzRing)
8 df-nel 2782 . . . . . . 7 (𝑅 ∉ NzRing ↔ ¬ 𝑅 ∈ NzRing)
97, 8sylib 206 . . . . . 6 (𝑍𝑊 → ¬ 𝑅 ∈ NzRing)
10 drngnzr 19032 . . . . . 6 (𝑅 ∈ DivRing → 𝑅 ∈ NzRing)
119, 10nsyl 133 . . . . 5 (𝑍𝑊 → ¬ 𝑅 ∈ DivRing)
1211adantl 480 . . . 4 ((𝐼𝑉𝑍𝑊) → ¬ 𝑅 ∈ DivRing)
136, 12eqneltrrd 2707 . . 3 ((𝐼𝑉𝑍𝑊) → ¬ (Scalar‘𝑀) ∈ DivRing)
1413intnand 952 . 2 ((𝐼𝑉𝑍𝑊) → ¬ (𝑀 ∈ LMod ∧ (Scalar‘𝑀) ∈ DivRing))
15 df-nel 2782 . . 3 (𝑀 ∉ LVec ↔ ¬ 𝑀 ∈ LVec)
16 eqid 2609 . . . 4 (Scalar‘𝑀) = (Scalar‘𝑀)
1716islvec 18874 . . 3 (𝑀 ∈ LVec ↔ (𝑀 ∈ LMod ∧ (Scalar‘𝑀) ∈ DivRing))
1815, 17xchbinx 322 . 2 (𝑀 ∉ LVec ↔ ¬ (𝑀 ∈ LMod ∧ (Scalar‘𝑀) ∈ DivRing))
1914, 18sylibr 222 1 ((𝐼𝑉𝑍𝑊) → 𝑀 ∉ LVec)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 382   = wceq 1474  wcel 1976  wnel 2780  Vcvv 3172  cun 3537  {csn 4124  {ctp 4128  cop 4130  cfv 5790  ndxcnx 15641  Basecbs 15644  +gcplusg 15717  .rcmulr 15718  Scalarcsca 15720   ·𝑠 cvsca 15721  DivRingcdr 18519  LModclmod 18635  LVecclvec 18872  NzRingcnzr 19027
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1712  ax-4 1727  ax-5 1826  ax-6 1874  ax-7 1921  ax-8 1978  ax-9 1985  ax-10 2005  ax-11 2020  ax-12 2033  ax-13 2233  ax-ext 2589  ax-rep 4693  ax-sep 4703  ax-nul 4712  ax-pow 4764  ax-pr 4828  ax-un 6825  ax-cnex 9849  ax-resscn 9850  ax-1cn 9851  ax-icn 9852  ax-addcl 9853  ax-addrcl 9854  ax-mulcl 9855  ax-mulrcl 9856  ax-mulcom 9857  ax-addass 9858  ax-mulass 9859  ax-distr 9860  ax-i2m1 9861  ax-1ne0 9862  ax-1rid 9863  ax-rnegex 9864  ax-rrecex 9865  ax-cnre 9866  ax-pre-lttri 9867  ax-pre-lttrn 9868  ax-pre-ltadd 9869  ax-pre-mulgt0 9870
This theorem depends on definitions:  df-bi 195  df-or 383  df-an 384  df-3or 1031  df-3an 1032  df-tru 1477  df-ex 1695  df-nf 1700  df-sb 1867  df-eu 2461  df-mo 2462  df-clab 2596  df-cleq 2602  df-clel 2605  df-nfc 2739  df-ne 2781  df-nel 2782  df-ral 2900  df-rex 2901  df-reu 2902  df-rmo 2903  df-rab 2904  df-v 3174  df-sbc 3402  df-csb 3499  df-dif 3542  df-un 3544  df-in 3546  df-ss 3553  df-pss 3555  df-nul 3874  df-if 4036  df-pw 4109  df-sn 4125  df-pr 4127  df-tp 4129  df-op 4131  df-uni 4367  df-int 4405  df-iun 4451  df-br 4578  df-opab 4638  df-mpt 4639  df-tr 4675  df-eprel 4939  df-id 4943  df-po 4949  df-so 4950  df-fr 4987  df-we 4989  df-xp 5034  df-rel 5035  df-cnv 5036  df-co 5037  df-dm 5038  df-rn 5039  df-res 5040  df-ima 5041  df-pred 5583  df-ord 5629  df-on 5630  df-lim 5631  df-suc 5632  df-iota 5754  df-fun 5792  df-fn 5793  df-f 5794  df-f1 5795  df-fo 5796  df-f1o 5797  df-fv 5798  df-riota 6489  df-ov 6530  df-oprab 6531  df-mpt2 6532  df-om 6936  df-1st 7037  df-2nd 7038  df-tpos 7217  df-wrecs 7272  df-recs 7333  df-rdg 7371  df-1o 7425  df-oadd 7429  df-er 7607  df-en 7820  df-dom 7821  df-sdom 7822  df-fin 7823  df-card 8626  df-cda 8851  df-pnf 9933  df-mnf 9934  df-xr 9935  df-ltxr 9936  df-le 9937  df-sub 10120  df-neg 10121  df-nn 10871  df-2 10929  df-3 10930  df-4 10931  df-5 10932  df-6 10933  df-n0 11143  df-z 11214  df-uz 11523  df-fz 12156  df-hash 12938  df-struct 15646  df-ndx 15647  df-slot 15648  df-base 15649  df-sets 15650  df-plusg 15730  df-mulr 15731  df-sca 15733  df-vsca 15734  df-0g 15874  df-mgm 17014  df-sgrp 17056  df-mnd 17067  df-grp 17197  df-minusg 17198  df-mgp 18262  df-ur 18274  df-ring 18321  df-oppr 18395  df-dvdsr 18413  df-unit 18414  df-drng 18521  df-lvec 18873  df-nzr 19028
This theorem is referenced by:  lvecpsslmod  42112
  Copyright terms: Public domain W3C validator