MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ifpsnprss Structured version   Visualization version   GIF version

Theorem ifpsnprss 27402
Description: Lemma for wlkvtxeledg 27403: Two adjacent (not necessarily different) vertices 𝐴 and 𝐵 in a walk are incident with an edge 𝐸. (Contributed by AV, 4-Apr-2021.) (Revised by AV, 5-Nov-2021.)
Assertion
Ref Expression
ifpsnprss (if-(𝐴 = 𝐵, 𝐸 = {𝐴}, {𝐴, 𝐵} ⊆ 𝐸) → {𝐴, 𝐵} ⊆ 𝐸)

Proof of Theorem ifpsnprss
StepHypRef Expression
1 ssidd 3983 . . 3 ((𝐴 = 𝐵𝐸 = {𝐴}) → {𝐴} ⊆ {𝐴})
2 preq2 4663 . . . . . 6 (𝐵 = 𝐴 → {𝐴, 𝐵} = {𝐴, 𝐴})
3 dfsn2 4573 . . . . . 6 {𝐴} = {𝐴, 𝐴}
42, 3syl6eqr 2873 . . . . 5 (𝐵 = 𝐴 → {𝐴, 𝐵} = {𝐴})
54eqcoms 2828 . . . 4 (𝐴 = 𝐵 → {𝐴, 𝐵} = {𝐴})
65adantr 483 . . 3 ((𝐴 = 𝐵𝐸 = {𝐴}) → {𝐴, 𝐵} = {𝐴})
7 simpr 487 . . 3 ((𝐴 = 𝐵𝐸 = {𝐴}) → 𝐸 = {𝐴})
81, 6, 73sstr4d 4007 . 2 ((𝐴 = 𝐵𝐸 = {𝐴}) → {𝐴, 𝐵} ⊆ 𝐸)
981fpid3 1077 1 (if-(𝐴 = 𝐵, 𝐸 = {𝐴}, {𝐴, 𝐵} ⊆ 𝐸) → {𝐴, 𝐵} ⊆ 𝐸)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 398  if-wif 1057   = wceq 1536  wss 3929  {csn 4560  {cpr 4562
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1969  ax-7 2014  ax-8 2115  ax-9 2123  ax-10 2144  ax-11 2160  ax-12 2176  ax-ext 2792
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-ifp 1058  df-tru 1539  df-ex 1780  df-nf 1784  df-sb 2069  df-clab 2799  df-cleq 2813  df-clel 2892  df-nfc 2962  df-v 3493  df-un 3934  df-in 3936  df-ss 3945  df-sn 4561  df-pr 4563
This theorem is referenced by:  wlkvtxeledg  27403
  Copyright terms: Public domain W3C validator