MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  indif Structured version   Visualization version   GIF version

Theorem indif 3827
Description: Intersection with class difference. Theorem 34 of [Suppes] p. 29. (Contributed by NM, 17-Aug-2004.)
Assertion
Ref Expression
indif (𝐴 ∩ (𝐴𝐵)) = (𝐴𝐵)

Proof of Theorem indif
StepHypRef Expression
1 dfin4 3825 . 2 (𝐴 ∩ (𝐴𝐵)) = (𝐴 ∖ (𝐴 ∖ (𝐴𝐵)))
2 dfin4 3825 . . 3 (𝐴𝐵) = (𝐴 ∖ (𝐴𝐵))
32difeq2i 3686 . 2 (𝐴 ∖ (𝐴𝐵)) = (𝐴 ∖ (𝐴 ∖ (𝐴𝐵)))
4 difin 3822 . 2 (𝐴 ∖ (𝐴𝐵)) = (𝐴𝐵)
51, 3, 43eqtr2i 2637 1 (𝐴 ∩ (𝐴𝐵)) = (𝐴𝐵)
Colors of variables: wff setvar class
Syntax hints:   = wceq 1474  cdif 3536  cin 3538
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1712  ax-4 1727  ax-5 1826  ax-6 1874  ax-7 1921  ax-10 2005  ax-11 2020  ax-12 2032  ax-13 2232  ax-ext 2589
This theorem depends on definitions:  df-bi 195  df-or 383  df-an 384  df-tru 1477  df-ex 1695  df-nf 1700  df-sb 1867  df-clab 2596  df-cleq 2602  df-clel 2605  df-nfc 2739  df-ral 2900  df-rab 2904  df-v 3174  df-dif 3542  df-in 3546  df-ss 3553
This theorem is referenced by:  resdif  6055  kmlem11  8842  psgndiflemB  19710
  Copyright terms: Public domain W3C validator