Users' Mathboxes Mathbox for Rohan Ridenour < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  mnupwd Structured version   Visualization version   GIF version

Theorem mnupwd 40677
Description: Minimal universes are closed under powersets. (Contributed by Rohan Ridenour, 13-Aug-2023.)
Hypotheses
Ref Expression
mnupwd.1 𝑀 = {𝑘 ∣ ∀𝑙𝑘 (𝒫 𝑙𝑘 ∧ ∀𝑚𝑛𝑘 (𝒫 𝑙𝑛 ∧ ∀𝑝𝑙 (∃𝑞𝑘 (𝑝𝑞𝑞𝑚) → ∃𝑟𝑚 (𝑝𝑟 𝑟𝑛))))}
mnupwd.2 (𝜑𝑈𝑀)
mnupwd.3 (𝜑𝐴𝑈)
Assertion
Ref Expression
mnupwd (𝜑 → 𝒫 𝐴𝑈)
Distinct variable groups:   𝑈,𝑘,𝑚,𝑛,𝑞,𝑝,𝑙   𝑈,𝑟,𝑘,𝑚,𝑛,𝑝,𝑙
Allowed substitution hints:   𝜑(𝑘,𝑚,𝑛,𝑟,𝑞,𝑝,𝑙)   𝐴(𝑘,𝑚,𝑛,𝑟,𝑞,𝑝,𝑙)   𝑀(𝑘,𝑚,𝑛,𝑟,𝑞,𝑝,𝑙)

Proof of Theorem mnupwd
Dummy variables 𝑤 𝑖 𝑣 𝑢 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 mnupwd.1 . 2 𝑀 = {𝑘 ∣ ∀𝑙𝑘 (𝒫 𝑙𝑘 ∧ ∀𝑚𝑛𝑘 (𝒫 𝑙𝑛 ∧ ∀𝑝𝑙 (∃𝑞𝑘 (𝑝𝑞𝑞𝑚) → ∃𝑟𝑚 (𝑝𝑟 𝑟𝑛))))}
2 mnupwd.2 . 2 (𝜑𝑈𝑀)
3 mnupwd.3 . . . 4 (𝜑𝐴𝑈)
4 0ex 5204 . . . . 5 ∅ ∈ V
54a1i 11 . . . 4 (𝜑 → ∅ ∈ V)
61, 2, 3, 5mnuop23d 40676 . . 3 (𝜑 → ∃𝑤𝑈 (𝒫 𝐴𝑤 ∧ ∀𝑖𝐴 (∃𝑣𝑈 (𝑖𝑣𝑣 ∈ ∅) → ∃𝑢 ∈ ∅ (𝑖𝑢 𝑢𝑤))))
7 simpl 485 . . . 4 ((𝒫 𝐴𝑤 ∧ ∀𝑖𝐴 (∃𝑣𝑈 (𝑖𝑣𝑣 ∈ ∅) → ∃𝑢 ∈ ∅ (𝑖𝑢 𝑢𝑤))) → 𝒫 𝐴𝑤)
87reximi 3242 . . 3 (∃𝑤𝑈 (𝒫 𝐴𝑤 ∧ ∀𝑖𝐴 (∃𝑣𝑈 (𝑖𝑣𝑣 ∈ ∅) → ∃𝑢 ∈ ∅ (𝑖𝑢 𝑢𝑤))) → ∃𝑤𝑈 𝒫 𝐴𝑤)
96, 8syl 17 . 2 (𝜑 → ∃𝑤𝑈 𝒫 𝐴𝑤)
101, 2, 9mnuss2d 40674 1 (𝜑 → 𝒫 𝐴𝑈)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 398  wal 1534   = wceq 1536  wcel 2113  {cab 2798  wral 3137  wrex 3138  Vcvv 3491  wss 3929  c0 4284  𝒫 cpw 4532   cuni 4831
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1969  ax-7 2014  ax-8 2115  ax-9 2123  ax-10 2144  ax-11 2160  ax-12 2176  ax-ext 2792  ax-sep 5196  ax-nul 5203
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3an 1084  df-tru 1539  df-ex 1780  df-nf 1784  df-sb 2069  df-clab 2799  df-cleq 2813  df-clel 2892  df-nfc 2962  df-ral 3142  df-rex 3143  df-rab 3146  df-v 3493  df-dif 3932  df-in 3936  df-ss 3945  df-nul 4285  df-pw 4534  df-uni 4832
This theorem is referenced by:  mnusnd  40678  mnuprssd  40679  mnugrud  40694
  Copyright terms: Public domain W3C validator