![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > nfrmo1 | Structured version Visualization version GIF version |
Description: The setvar 𝑥 is not free in ∃*𝑥 ∈ 𝐴𝜑. (Contributed by NM, 16-Jun-2017.) |
Ref | Expression |
---|---|
nfrmo1 | ⊢ Ⅎ𝑥∃*𝑥 ∈ 𝐴 𝜑 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-rmo 3050 | . 2 ⊢ (∃*𝑥 ∈ 𝐴 𝜑 ↔ ∃*𝑥(𝑥 ∈ 𝐴 ∧ 𝜑)) | |
2 | nfmo1 2610 | . 2 ⊢ Ⅎ𝑥∃*𝑥(𝑥 ∈ 𝐴 ∧ 𝜑) | |
3 | 1, 2 | nfxfr 1920 | 1 ⊢ Ⅎ𝑥∃*𝑥 ∈ 𝐴 𝜑 |
Colors of variables: wff setvar class |
Syntax hints: ∧ wa 383 Ⅎwnf 1849 ∈ wcel 2131 ∃*wmo 2600 ∃*wrmo 3045 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1863 ax-4 1878 ax-5 1980 ax-6 2046 ax-7 2082 ax-10 2160 ax-11 2175 ax-12 2188 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-ex 1846 df-nf 1851 df-eu 2603 df-mo 2604 df-rmo 3050 |
This theorem is referenced by: nfdisj1 4777 2reu3 41686 |
Copyright terms: Public domain | W3C validator |