![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > df-rmo | Structured version Visualization version GIF version |
Description: Define restricted "at most one". (Contributed by NM, 16-Jun-2017.) |
Ref | Expression |
---|---|
df-rmo | ⊢ (∃*𝑥 ∈ 𝐴 𝜑 ↔ ∃*𝑥(𝑥 ∈ 𝐴 ∧ 𝜑)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | wph | . . 3 wff 𝜑 | |
2 | vx | . . 3 setvar 𝑥 | |
3 | cA | . . 3 class 𝐴 | |
4 | 1, 2, 3 | wrmo 2944 | . 2 wff ∃*𝑥 ∈ 𝐴 𝜑 |
5 | 2 | cv 1522 | . . . . 5 class 𝑥 |
6 | 5, 3 | wcel 2030 | . . . 4 wff 𝑥 ∈ 𝐴 |
7 | 6, 1 | wa 383 | . . 3 wff (𝑥 ∈ 𝐴 ∧ 𝜑) |
8 | 7, 2 | wmo 2499 | . 2 wff ∃*𝑥(𝑥 ∈ 𝐴 ∧ 𝜑) |
9 | 4, 8 | wb 196 | 1 wff (∃*𝑥 ∈ 𝐴 𝜑 ↔ ∃*𝑥(𝑥 ∈ 𝐴 ∧ 𝜑)) |
Colors of variables: wff setvar class |
This definition is referenced by: nfrmo1 3140 nfrmod 3142 nfrmo 3144 rmobida 3159 rmobiia 3162 rmoeq1f 3167 mormo 3188 reu5 3189 rmo5 3192 rmov 3253 rmo4 3432 rmoeq 3438 rmoan 3439 rmoim 3440 rmoimi2 3442 2reuswap 3443 2reu5lem2 3447 rmo2 3559 rmo3 3561 rmob 3562 rmob2 3564 dfdisj2 4654 reuxfr2d 4921 rmorabex 4958 dffun9 5955 fncnv 6000 iunmapdisj 8884 brdom4 9390 enqeq 9794 2ndcdisj 21307 2ndcdisj2 21308 pjhtheu 28381 pjpreeq 28385 cnlnadjeui 29064 rmoxfrd 29460 ssrmo 29461 rmo3f 29462 cbvdisjf 29511 funcnvmpt 29596 alrmomorn 34263 alrmomodm 34264 cdleme0moN 35830 2rmoswap 41505 |
Copyright terms: Public domain | W3C validator |