MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  pwin Structured version   Visualization version   GIF version

Theorem pwin 4836
Description: The power class of the intersection of two classes is the intersection of their power classes. Exercise 4.12(j) of [Mendelson] p. 235. (Contributed by NM, 23-Nov-2003.)
Assertion
Ref Expression
pwin 𝒫 (𝐴𝐵) = (𝒫 𝐴 ∩ 𝒫 𝐵)

Proof of Theorem pwin
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 ssin 3700 . . . 4 ((𝑥𝐴𝑥𝐵) ↔ 𝑥 ⊆ (𝐴𝐵))
2 selpw 4018 . . . . 5 (𝑥 ∈ 𝒫 𝐴𝑥𝐴)
3 selpw 4018 . . . . 5 (𝑥 ∈ 𝒫 𝐵𝑥𝐵)
42, 3anbi12i 728 . . . 4 ((𝑥 ∈ 𝒫 𝐴𝑥 ∈ 𝒫 𝐵) ↔ (𝑥𝐴𝑥𝐵))
5 selpw 4018 . . . 4 (𝑥 ∈ 𝒫 (𝐴𝐵) ↔ 𝑥 ⊆ (𝐴𝐵))
61, 4, 53bitr4i 290 . . 3 ((𝑥 ∈ 𝒫 𝐴𝑥 ∈ 𝒫 𝐵) ↔ 𝑥 ∈ 𝒫 (𝐴𝐵))
76ineqri 3671 . 2 (𝒫 𝐴 ∩ 𝒫 𝐵) = 𝒫 (𝐴𝐵)
87eqcomi 2523 1 𝒫 (𝐴𝐵) = (𝒫 𝐴 ∩ 𝒫 𝐵)
Colors of variables: wff setvar class
Syntax hints:  wa 382   = wceq 1474  wcel 1938  cin 3443  wss 3444  𝒫 cpw 4011
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1700  ax-4 1713  ax-5 1793  ax-6 1838  ax-7 1885  ax-10 1966  ax-11 1971  ax-12 1983  ax-13 2137  ax-ext 2494
This theorem depends on definitions:  df-bi 195  df-an 384  df-tru 1477  df-ex 1695  df-nf 1699  df-sb 1831  df-clab 2501  df-cleq 2507  df-clel 2510  df-nfc 2644  df-v 3079  df-in 3451  df-ss 3458  df-pw 4013
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator