MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  pwundif Structured version   Visualization version   GIF version

Theorem pwundif 4981
Description: Break up the power class of a union into a union of smaller classes. (Contributed by NM, 25-Mar-2007.) (Proof shortened by Thierry Arnoux, 20-Dec-2016.)
Assertion
Ref Expression
pwundif 𝒫 (𝐴𝐵) = ((𝒫 (𝐴𝐵) ∖ 𝒫 𝐴) ∪ 𝒫 𝐴)

Proof of Theorem pwundif
StepHypRef Expression
1 undif1 4015 . 2 ((𝒫 (𝐴𝐵) ∖ 𝒫 𝐴) ∪ 𝒫 𝐴) = (𝒫 (𝐴𝐵) ∪ 𝒫 𝐴)
2 pwunss 4979 . . . . 5 (𝒫 𝐴 ∪ 𝒫 𝐵) ⊆ 𝒫 (𝐴𝐵)
3 unss 3765 . . . . 5 ((𝒫 𝐴 ⊆ 𝒫 (𝐴𝐵) ∧ 𝒫 𝐵 ⊆ 𝒫 (𝐴𝐵)) ↔ (𝒫 𝐴 ∪ 𝒫 𝐵) ⊆ 𝒫 (𝐴𝐵))
42, 3mpbir 221 . . . 4 (𝒫 𝐴 ⊆ 𝒫 (𝐴𝐵) ∧ 𝒫 𝐵 ⊆ 𝒫 (𝐴𝐵))
54simpli 474 . . 3 𝒫 𝐴 ⊆ 𝒫 (𝐴𝐵)
6 ssequn2 3764 . . 3 (𝒫 𝐴 ⊆ 𝒫 (𝐴𝐵) ↔ (𝒫 (𝐴𝐵) ∪ 𝒫 𝐴) = 𝒫 (𝐴𝐵))
75, 6mpbi 220 . 2 (𝒫 (𝐴𝐵) ∪ 𝒫 𝐴) = 𝒫 (𝐴𝐵)
81, 7eqtr2i 2644 1 𝒫 (𝐴𝐵) = ((𝒫 (𝐴𝐵) ∖ 𝒫 𝐴) ∪ 𝒫 𝐴)
Colors of variables: wff setvar class
Syntax hints:  wa 384   = wceq 1480  cdif 3552  cun 3553  wss 3555  𝒫 cpw 4130
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1719  ax-4 1734  ax-5 1836  ax-6 1885  ax-7 1932  ax-9 1996  ax-10 2016  ax-11 2031  ax-12 2044  ax-13 2245  ax-ext 2601
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-tru 1483  df-ex 1702  df-nf 1707  df-sb 1878  df-clab 2608  df-cleq 2614  df-clel 2617  df-nfc 2750  df-ral 2912  df-rab 2916  df-v 3188  df-dif 3558  df-un 3560  df-in 3562  df-ss 3569  df-nul 3892  df-pw 4132
This theorem is referenced by:  pwfilem  8204
  Copyright terms: Public domain W3C validator