MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  rabxfr Structured version   Visualization version   GIF version

Theorem rabxfr 4920
Description: Class builder membership after substituting an expression 𝐴 (containing 𝑦) for 𝑥 in the class expression 𝜑. (Contributed by NM, 10-Jun-2005.)
Hypotheses
Ref Expression
rabxfr.1 𝑦𝐵
rabxfr.2 𝑦𝐶
rabxfr.3 (𝑦𝐷𝐴𝐷)
rabxfr.4 (𝑥 = 𝐴 → (𝜑𝜓))
rabxfr.5 (𝑦 = 𝐵𝐴 = 𝐶)
Assertion
Ref Expression
rabxfr (𝐵𝐷 → (𝐶 ∈ {𝑥𝐷𝜑} ↔ 𝐵 ∈ {𝑦𝐷𝜓}))
Distinct variable groups:   𝑥,𝐴   𝑥,𝑦,𝐷   𝜑,𝑦   𝜓,𝑥
Allowed substitution hints:   𝜑(𝑥)   𝜓(𝑦)   𝐴(𝑦)   𝐵(𝑥,𝑦)   𝐶(𝑥,𝑦)

Proof of Theorem rabxfr
StepHypRef Expression
1 tru 1527 . 2
2 rabxfr.1 . . 3 𝑦𝐵
3 rabxfr.2 . . 3 𝑦𝐶
4 rabxfr.3 . . . 4 (𝑦𝐷𝐴𝐷)
54adantl 481 . . 3 ((⊤ ∧ 𝑦𝐷) → 𝐴𝐷)
6 rabxfr.4 . . 3 (𝑥 = 𝐴 → (𝜑𝜓))
7 rabxfr.5 . . 3 (𝑦 = 𝐵𝐴 = 𝐶)
82, 3, 5, 6, 7rabxfrd 4919 . 2 ((⊤ ∧ 𝐵𝐷) → (𝐶 ∈ {𝑥𝐷𝜑} ↔ 𝐵 ∈ {𝑦𝐷𝜓}))
91, 8mpan 706 1 (𝐵𝐷 → (𝐶 ∈ {𝑥𝐷𝜑} ↔ 𝐵 ∈ {𝑦𝐷𝜓}))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196   = wceq 1523  wtru 1524  wcel 2030  wnfc 2780  {crab 2945
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1762  ax-4 1777  ax-5 1879  ax-6 1945  ax-7 1981  ax-9 2039  ax-10 2059  ax-11 2074  ax-12 2087  ax-13 2282  ax-ext 2631
This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-tru 1526  df-ex 1745  df-nf 1750  df-sb 1938  df-clab 2638  df-cleq 2644  df-clel 2647  df-nfc 2782  df-ral 2946  df-rab 2950  df-v 3233
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator