MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  relin2 Structured version   Visualization version   GIF version

Theorem relin2 5145
Description: The intersection with a relation is a relation. (Contributed by NM, 17-Jan-2006.)
Assertion
Ref Expression
relin2 (Rel 𝐵 → Rel (𝐴𝐵))

Proof of Theorem relin2
StepHypRef Expression
1 inss2 3791 . 2 (𝐴𝐵) ⊆ 𝐵
2 relss 5115 . 2 ((𝐴𝐵) ⊆ 𝐵 → (Rel 𝐵 → Rel (𝐴𝐵)))
31, 2ax-mp 5 1 (Rel 𝐵 → Rel (𝐴𝐵))
Colors of variables: wff setvar class
Syntax hints:  wi 4  cin 3534  wss 3535  Rel wrel 5029
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1711  ax-4 1726  ax-5 1825  ax-6 1873  ax-7 1920  ax-10 2004  ax-11 2019  ax-12 2031  ax-13 2228  ax-ext 2585
This theorem depends on definitions:  df-bi 195  df-or 383  df-an 384  df-tru 1477  df-ex 1695  df-nf 1700  df-sb 1866  df-clab 2592  df-cleq 2598  df-clel 2601  df-nfc 2735  df-v 3170  df-in 3542  df-ss 3549  df-rel 5031
This theorem is referenced by:  intasym  5413  asymref  5414  poirr2  5422  brdom3  9204  brdom5  9205  brdom4  9206  clcnvlem  36748
  Copyright terms: Public domain W3C validator