![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > reuxfr | Structured version Visualization version GIF version |
Description: Transfer existential uniqueness from a variable 𝑥 to another variable 𝑦 contained in expression 𝐴. Use reuhyp 5045 to eliminate the second hypothesis. (Contributed by NM, 14-Nov-2004.) |
Ref | Expression |
---|---|
reuxfr.1 | ⊢ (𝑦 ∈ 𝐵 → 𝐴 ∈ 𝐵) |
reuxfr.2 | ⊢ (𝑥 ∈ 𝐵 → ∃!𝑦 ∈ 𝐵 𝑥 = 𝐴) |
reuxfr.3 | ⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜓)) |
Ref | Expression |
---|---|
reuxfr | ⊢ (∃!𝑥 ∈ 𝐵 𝜑 ↔ ∃!𝑦 ∈ 𝐵 𝜓) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | reuxfr.1 | . . . 4 ⊢ (𝑦 ∈ 𝐵 → 𝐴 ∈ 𝐵) | |
2 | 1 | adantl 473 | . . 3 ⊢ ((⊤ ∧ 𝑦 ∈ 𝐵) → 𝐴 ∈ 𝐵) |
3 | reuxfr.2 | . . . 4 ⊢ (𝑥 ∈ 𝐵 → ∃!𝑦 ∈ 𝐵 𝑥 = 𝐴) | |
4 | 3 | adantl 473 | . . 3 ⊢ ((⊤ ∧ 𝑥 ∈ 𝐵) → ∃!𝑦 ∈ 𝐵 𝑥 = 𝐴) |
5 | reuxfr.3 | . . 3 ⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜓)) | |
6 | 2, 4, 5 | reuxfrd 5042 | . 2 ⊢ (⊤ → (∃!𝑥 ∈ 𝐵 𝜑 ↔ ∃!𝑦 ∈ 𝐵 𝜓)) |
7 | 6 | trud 1642 | 1 ⊢ (∃!𝑥 ∈ 𝐵 𝜑 ↔ ∃!𝑦 ∈ 𝐵 𝜓) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 196 = wceq 1632 ⊤wtru 1633 ∈ wcel 2139 ∃!wreu 3052 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1871 ax-4 1886 ax-5 1988 ax-6 2054 ax-7 2090 ax-9 2148 ax-10 2168 ax-11 2183 ax-12 2196 ax-13 2391 ax-ext 2740 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-tru 1635 df-ex 1854 df-nf 1859 df-sb 2047 df-eu 2611 df-mo 2612 df-clab 2747 df-cleq 2753 df-clel 2756 df-ral 3055 df-rex 3056 df-reu 3057 df-rmo 3058 df-v 3342 |
This theorem is referenced by: zmax 11998 rebtwnz 12000 |
Copyright terms: Public domain | W3C validator |