MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ssprss Structured version   Visualization version   GIF version

Theorem ssprss 4388
Description: A pair as subset of a pair. (Contributed by AV, 26-Oct-2020.)
Assertion
Ref Expression
ssprss ((𝐴𝑉𝐵𝑊) → ({𝐴, 𝐵} ⊆ {𝐶, 𝐷} ↔ ((𝐴 = 𝐶𝐴 = 𝐷) ∧ (𝐵 = 𝐶𝐵 = 𝐷))))

Proof of Theorem ssprss
StepHypRef Expression
1 prssg 4382 . 2 ((𝐴𝑉𝐵𝑊) → ((𝐴 ∈ {𝐶, 𝐷} ∧ 𝐵 ∈ {𝐶, 𝐷}) ↔ {𝐴, 𝐵} ⊆ {𝐶, 𝐷}))
2 elprg 4229 . . 3 (𝐴𝑉 → (𝐴 ∈ {𝐶, 𝐷} ↔ (𝐴 = 𝐶𝐴 = 𝐷)))
3 elprg 4229 . . 3 (𝐵𝑊 → (𝐵 ∈ {𝐶, 𝐷} ↔ (𝐵 = 𝐶𝐵 = 𝐷)))
42, 3bi2anan9 935 . 2 ((𝐴𝑉𝐵𝑊) → ((𝐴 ∈ {𝐶, 𝐷} ∧ 𝐵 ∈ {𝐶, 𝐷}) ↔ ((𝐴 = 𝐶𝐴 = 𝐷) ∧ (𝐵 = 𝐶𝐵 = 𝐷))))
51, 4bitr3d 270 1 ((𝐴𝑉𝐵𝑊) → ({𝐴, 𝐵} ⊆ {𝐶, 𝐷} ↔ ((𝐴 = 𝐶𝐴 = 𝐷) ∧ (𝐵 = 𝐶𝐵 = 𝐷))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wo 382  wa 383   = wceq 1523  wcel 2030  wss 3607  {cpr 4212
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1762  ax-4 1777  ax-5 1879  ax-6 1945  ax-7 1981  ax-9 2039  ax-10 2059  ax-11 2074  ax-12 2087  ax-13 2282  ax-ext 2631
This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3an 1056  df-tru 1526  df-ex 1745  df-nf 1750  df-sb 1938  df-clab 2638  df-cleq 2644  df-clel 2647  df-nfc 2782  df-v 3233  df-un 3612  df-in 3614  df-ss 3621  df-sn 4211  df-pr 4213
This theorem is referenced by:  ssprsseq  4389
  Copyright terms: Public domain W3C validator