MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  upgr1wlkdlem1 Structured version   Visualization version   GIF version

Theorem upgr1wlkdlem1 27924
Description: Lemma 1 for upgr1wlkd 27926. (Contributed by AV, 22-Jan-2021.)
Hypotheses
Ref Expression
upgr1wlkd.p 𝑃 = ⟨“𝑋𝑌”⟩
upgr1wlkd.f 𝐹 = ⟨“𝐽”⟩
upgr1wlkd.x (𝜑𝑋 ∈ (Vtx‘𝐺))
upgr1wlkd.y (𝜑𝑌 ∈ (Vtx‘𝐺))
upgr1wlkd.j (𝜑 → ((iEdg‘𝐺)‘𝐽) = {𝑋, 𝑌})
Assertion
Ref Expression
upgr1wlkdlem1 ((𝜑𝑋 = 𝑌) → ((iEdg‘𝐺)‘𝐽) = {𝑋})

Proof of Theorem upgr1wlkdlem1
StepHypRef Expression
1 upgr1wlkd.j . . 3 (𝜑 → ((iEdg‘𝐺)‘𝐽) = {𝑋, 𝑌})
2 preq2 4670 . . . . . . 7 (𝑌 = 𝑋 → {𝑋, 𝑌} = {𝑋, 𝑋})
32eqeq2d 2832 . . . . . 6 (𝑌 = 𝑋 → (((iEdg‘𝐺)‘𝐽) = {𝑋, 𝑌} ↔ ((iEdg‘𝐺)‘𝐽) = {𝑋, 𝑋}))
43eqcoms 2829 . . . . 5 (𝑋 = 𝑌 → (((iEdg‘𝐺)‘𝐽) = {𝑋, 𝑌} ↔ ((iEdg‘𝐺)‘𝐽) = {𝑋, 𝑋}))
5 simpl 485 . . . . . . 7 ((((iEdg‘𝐺)‘𝐽) = {𝑋, 𝑋} ∧ 𝜑) → ((iEdg‘𝐺)‘𝐽) = {𝑋, 𝑋})
6 dfsn2 4580 . . . . . . 7 {𝑋} = {𝑋, 𝑋}
75, 6syl6eqr 2874 . . . . . 6 ((((iEdg‘𝐺)‘𝐽) = {𝑋, 𝑋} ∧ 𝜑) → ((iEdg‘𝐺)‘𝐽) = {𝑋})
87ex 415 . . . . 5 (((iEdg‘𝐺)‘𝐽) = {𝑋, 𝑋} → (𝜑 → ((iEdg‘𝐺)‘𝐽) = {𝑋}))
94, 8syl6bi 255 . . . 4 (𝑋 = 𝑌 → (((iEdg‘𝐺)‘𝐽) = {𝑋, 𝑌} → (𝜑 → ((iEdg‘𝐺)‘𝐽) = {𝑋})))
109com13 88 . . 3 (𝜑 → (((iEdg‘𝐺)‘𝐽) = {𝑋, 𝑌} → (𝑋 = 𝑌 → ((iEdg‘𝐺)‘𝐽) = {𝑋})))
111, 10mpd 15 . 2 (𝜑 → (𝑋 = 𝑌 → ((iEdg‘𝐺)‘𝐽) = {𝑋}))
1211imp 409 1 ((𝜑𝑋 = 𝑌) → ((iEdg‘𝐺)‘𝐽) = {𝑋})
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 208  wa 398   = wceq 1537  wcel 2114  {csn 4567  {cpr 4569  cfv 6355  ⟨“cs1 13949  ⟨“cs2 14203  Vtxcvtx 26781  iEdgciedg 26782
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2793
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-tru 1540  df-ex 1781  df-nf 1785  df-sb 2070  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-v 3496  df-un 3941  df-sn 4568  df-pr 4570
This theorem is referenced by:  upgr1wlkd  27926  upgr1trld  27927  upgr1pthd  27928  upgr1pthond  27929
  Copyright terms: Public domain W3C validator