![]() |
Higher-Order Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > HOLE Home > Th. List > axmp | Unicode version |
Description: Rule of Modus Ponens. The postulated inference rule of propositional calculus. See e.g. Rule 1 of [Hamilton] p. 73. |
Ref | Expression |
---|---|
axmp.1 |
![]() ![]() ![]() ![]() |
axmp.2 |
![]() ![]() ![]() ![]() |
axmp.3 |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Ref | Expression |
---|---|
axmp |
![]() ![]() ![]() ![]() |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | axmp.1 |
. 2
![]() ![]() ![]() ![]() | |
2 | axmp.2 |
. 2
![]() ![]() ![]() ![]() | |
3 | axmp.3 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
4 | 1, 2, 3 | mpd 146 |
1
![]() ![]() ![]() ![]() |
Colors of variables: type var term |
Syntax hints: ![]() ![]() ![]() ![]() ![]() |
This theorem was proved from axioms: ax-syl 15 ax-jca 17 ax-simpl 20 ax-simpr 21 ax-id 24 ax-trud 26 ax-cb1 29 ax-cb2 30 ax-refl 39 ax-eqmp 42 ax-ded 43 ax-ceq 46 ax-beta 60 ax-distrc 61 ax-leq 62 ax-distrl 63 ax-hbl1 93 ax-17 95 ax-inst 103 |
This theorem depends on definitions: df-ov 65 df-an 118 df-im 119 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |