Higher-Order Logic Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  HOLE Home  >  Th. List  >  axmp GIF version

Theorem axmp 206
 Description: Rule of Modus Ponens. The postulated inference rule of propositional calculus. See e.g. Rule 1 of [Hamilton] p. 73. (Contributed by Mario Carneiro, 10-Oct-2014.)
Hypotheses
Ref Expression
axmp.1 S:∗
axmp.2 ⊤⊧R
axmp.3 ⊤⊧[RS]
Assertion
Ref Expression
axmp ⊤⊧S

Proof of Theorem axmp
StepHypRef Expression
1 axmp.1 . 2 S:∗
2 axmp.2 . 2 ⊤⊧R
3 axmp.3 . 2 ⊤⊧[RS]
41, 2, 3mpd 156 1 ⊤⊧S
 Colors of variables: type var term Syntax hints:  ∗hb 3  ⊤kt 8  [kbr 9  ⊧wffMMJ2 11  wffMMJ2t 12   ⇒ tim 121 This theorem was proved from axioms:  ax-syl 15  ax-jca 17  ax-simpl 20  ax-simpr 21  ax-id 24  ax-trud 26  ax-cb1 29  ax-cb2 30  ax-wctl 31  ax-wctr 32  ax-weq 40  ax-refl 42  ax-eqmp 45  ax-ded 46  ax-wct 47  ax-wc 49  ax-ceq 51  ax-wv 63  ax-wl 65  ax-beta 67  ax-distrc 68  ax-leq 69  ax-distrl 70  ax-wov 71  ax-eqtypi 77  ax-eqtypri 80  ax-hbl1 103  ax-17 105  ax-inst 113 This theorem depends on definitions:  df-ov 73  df-an 128  df-im 129 This theorem is referenced by: (None)
 Copyright terms: Public domain W3C validator