| Higher-Order Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > HOLE Home > Th. List > axmp | GIF version | ||
| Description: Rule of Modus Ponens. The postulated inference rule of propositional calculus. See e.g. Rule 1 of [Hamilton] p. 73. (Contributed by Mario Carneiro, 10-Oct-2014.) |
| Ref | Expression |
|---|---|
| axmp.1 | ⊢ S:∗ |
| axmp.2 | ⊢ ⊤⊧R |
| axmp.3 | ⊢ ⊤⊧[R ⇒ S] |
| Ref | Expression |
|---|---|
| axmp | ⊢ ⊤⊧S |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | axmp.1 | . 2 ⊢ S:∗ | |
| 2 | axmp.2 | . 2 ⊢ ⊤⊧R | |
| 3 | axmp.3 | . 2 ⊢ ⊤⊧[R ⇒ S] | |
| 4 | 1, 2, 3 | mpd 156 | 1 ⊢ ⊤⊧S |
| Colors of variables: type var term |
| Syntax hints: ∗hb 3 ⊤kt 8 [kbr 9 ⊧wffMMJ2 11 wffMMJ2t 12 ⇒ tim 121 |
| This theorem was proved from axioms: ax-syl 15 ax-jca 17 ax-simpl 20 ax-simpr 21 ax-id 24 ax-trud 26 ax-cb1 29 ax-cb2 30 ax-wctl 31 ax-wctr 32 ax-weq 40 ax-refl 42 ax-eqmp 45 ax-ded 46 ax-wct 47 ax-wc 49 ax-ceq 51 ax-wv 63 ax-wl 65 ax-beta 67 ax-distrc 68 ax-leq 69 ax-distrl 70 ax-wov 71 ax-eqtypi 77 ax-eqtypri 80 ax-hbl1 103 ax-17 105 ax-inst 113 |
| This theorem depends on definitions: df-ov 73 df-an 128 df-im 129 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |