Higher-Order Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > HOLE Home > Th. List > ax5 | Unicode version |
Description: Axiom of Quantified Implication. Axiom C4 of [Monk2] p. 105. (Contributed by Mario Carneiro, 10-Oct-2014.) |
Ref | Expression |
---|---|
ax5.1 | |
ax5.2 |
Ref | Expression |
---|---|
ax5 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ax5.2 | . . . . . 6 | |
2 | ax5.1 | . . . . . . . 8 | |
3 | 2 | ax4 150 | . . . . . . 7 |
4 | wal 134 | . . . . . . . 8 | |
5 | wim 137 | . . . . . . . . . 10 | |
6 | 5, 2, 1 | wov 72 | . . . . . . . . 9 |
7 | 6 | wl 66 | . . . . . . . 8 |
8 | 4, 7 | wc 50 | . . . . . . 7 |
9 | 3, 8 | adantl 56 | . . . . . 6 |
10 | 6 | ax4 150 | . . . . . . 7 |
11 | 3 | ax-cb1 29 | . . . . . . 7 |
12 | 10, 11 | adantr 55 | . . . . . 6 |
13 | 1, 9, 12 | mpd 156 | . . . . 5 |
14 | wv 64 | . . . . . 6 | |
15 | 4, 14 | ax-17 105 | . . . . . . 7 |
16 | 6, 14 | ax-hbl1 103 | . . . . . . 7 |
17 | 4, 7, 14, 15, 16 | hbc 110 | . . . . . 6 |
18 | 2 | wl 66 | . . . . . . 7 |
19 | 2, 14 | ax-hbl1 103 | . . . . . . 7 |
20 | 4, 18, 14, 15, 19 | hbc 110 | . . . . . 6 |
21 | 8, 14, 11, 17, 20 | hbct 155 | . . . . 5 |
22 | 13, 21 | alrimi 182 | . . . 4 |
23 | 22 | ex 158 | . . 3 |
24 | wtru 43 | . . 3 | |
25 | 23, 24 | adantl 56 | . 2 |
26 | 25 | ex 158 | 1 |
Colors of variables: type var term |
Syntax hints: tv 1 ht 2 hb 3 kc 5 kl 6 kt 8 kbr 9 kct 10 wffMMJ2 11 wffMMJ2t 12 tim 121 tal 122 |
This theorem was proved from axioms: ax-syl 15 ax-jca 17 ax-simpl 20 ax-simpr 21 ax-id 24 ax-trud 26 ax-cb1 29 ax-cb2 30 ax-wctl 31 ax-wctr 32 ax-weq 40 ax-refl 42 ax-eqmp 45 ax-ded 46 ax-wct 47 ax-wc 49 ax-ceq 51 ax-wv 63 ax-wl 65 ax-beta 67 ax-distrc 68 ax-leq 69 ax-distrl 70 ax-wov 71 ax-eqtypi 77 ax-eqtypri 80 ax-hbl1 103 ax-17 105 ax-inst 113 ax-eta 177 |
This theorem depends on definitions: df-ov 73 df-al 126 df-an 128 df-im 129 |
This theorem is referenced by: ax11 214 |
Copyright terms: Public domain | W3C validator |