HOLE Home Higher-Order Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HOLE Home  >  Th. List  >  ax5 Unicode version

Theorem ax5 207
Description: Axiom of Quantified Implication. Axiom C4 of [Monk2] p. 105. (Contributed by Mario Carneiro, 10-Oct-2014.)
Hypotheses
Ref Expression
ax5.1 |- R:*
ax5.2 |- S:*
Assertion
Ref Expression
ax5 |- T. |= [(A.\x:al [R ==> S]) ==> [(A.\x:al R) ==> (A.\x:al S)]]
Distinct variable group:   al,x

Proof of Theorem ax5
Dummy variable y is distinct from all other variables.
StepHypRef Expression
1 ax5.2 . . . . . 6 |- S:*
2 ax5.1 . . . . . . . 8 |- R:*
32ax4 150 . . . . . . 7 |- (A.\x:al R) |= R
4 wal 134 . . . . . . . 8 |- A.:((al -> *) -> *)
5 wim 137 . . . . . . . . . 10 |- ==> :(* -> (* -> *))
65, 2, 1wov 72 . . . . . . . . 9 |- [R ==> S]:*
76wl 66 . . . . . . . 8 |- \x:al [R ==> S]:(al -> *)
84, 7wc 50 . . . . . . 7 |- (A.\x:al [R ==> S]):*
93, 8adantl 56 . . . . . 6 |- ((A.\x:al [R ==> S]), (A.\x:al R)) |= R
106ax4 150 . . . . . . 7 |- (A.\x:al [R ==> S]) |= [R ==> S]
113ax-cb1 29 . . . . . . 7 |- (A.\x:al R):*
1210, 11adantr 55 . . . . . 6 |- ((A.\x:al [R ==> S]), (A.\x:al R)) |= [R ==> S]
131, 9, 12mpd 156 . . . . 5 |- ((A.\x:al [R ==> S]), (A.\x:al R)) |= S
14 wv 64 . . . . . 6 |- y:al:al
154, 14ax-17 105 . . . . . . 7 |- T. |= [(\x:al A.y:al) = A.]
166, 14ax-hbl1 103 . . . . . . 7 |- T. |= [(\x:al \x:al [R ==> S]y:al) = \x:al [R ==> S]]
174, 7, 14, 15, 16hbc 110 . . . . . 6 |- T. |= [(\x:al (A.\x:al [R ==> S])y:al) = (A.\x:al [R ==> S])]
182wl 66 . . . . . . 7 |- \x:al R:(al -> *)
192, 14ax-hbl1 103 . . . . . . 7 |- T. |= [(\x:al \x:al Ry:al) = \x:al R]
204, 18, 14, 15, 19hbc 110 . . . . . 6 |- T. |= [(\x:al (A.\x:al R)y:al) = (A.\x:al R)]
218, 14, 11, 17, 20hbct 155 . . . . 5 |- T. |= [(\x:al ((A.\x:al [R ==> S]), (A.\x:al R))y:al) = ((A.\x:al [R ==> S]), (A.\x:al R))]
2213, 21alrimi 182 . . . 4 |- ((A.\x:al [R ==> S]), (A.\x:al R)) |= (A.\x:al S)
2322ex 158 . . 3 |- (A.\x:al [R ==> S]) |= [(A.\x:al R) ==> (A.\x:al S)]
24 wtru 43 . . 3 |- T.:*
2523, 24adantl 56 . 2 |- (T., (A.\x:al [R ==> S])) |= [(A.\x:al R) ==> (A.\x:al S)]
2625ex 158 1 |- T. |= [(A.\x:al [R ==> S]) ==> [(A.\x:al R) ==> (A.\x:al S)]]
Colors of variables: type var term
Syntax hints:  tv 1   -> ht 2  *hb 3  kc 5  \kl 6  T.kt 8  [kbr 9  kct 10   |= wffMMJ2 11  wffMMJ2t 12   ==> tim 121  A.tal 122
This theorem was proved from axioms:  ax-syl 15  ax-jca 17  ax-simpl 20  ax-simpr 21  ax-id 24  ax-trud 26  ax-cb1 29  ax-cb2 30  ax-wctl 31  ax-wctr 32  ax-weq 40  ax-refl 42  ax-eqmp 45  ax-ded 46  ax-wct 47  ax-wc 49  ax-ceq 51  ax-wv 63  ax-wl 65  ax-beta 67  ax-distrc 68  ax-leq 69  ax-distrl 70  ax-wov 71  ax-eqtypi 77  ax-eqtypri 80  ax-hbl1 103  ax-17 105  ax-inst 113  ax-eta 177
This theorem depends on definitions:  df-ov 73  df-al 126  df-an 128  df-im 129
This theorem is referenced by:  ax11  214
  Copyright terms: Public domain W3C validator