| Higher-Order Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > HOLE Home > Th. List > syldan | Unicode version | ||
| Description: Syllogism inference. (Contributed by Mario Carneiro, 8-Oct-2014.) |
| Ref | Expression |
|---|---|
| syldan.1 |
|
| syldan.2 |
|
| Ref | Expression |
|---|---|
| syldan |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | syldan.1 |
. . . . 5
| |
| 2 | 1 | ax-cb1 29 |
. . . 4
|
| 3 | 2 | wctl 33 |
. . 3
|
| 4 | 2 | wctr 34 |
. . 3
|
| 5 | 3, 4 | simpl 22 |
. 2
|
| 6 | syldan.2 |
. 2
| |
| 7 | 5, 1, 6 | syl2anc 19 |
1
|
| Colors of variables: type var term |
| Syntax hints: kct 10
|
| This theorem was proved from axioms: ax-syl 15 ax-jca 17 ax-simpl 20 ax-cb1 29 ax-wctl 31 ax-wctr 32 |
| This theorem is referenced by: alimdv 184 |
| Copyright terms: Public domain | W3C validator |