HOLE Home Higher-Order Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HOLE Home  >  Th. List  >  syldan Unicode version

Theorem syldan 36
Description: Syllogism inference. (Contributed by Mario Carneiro, 8-Oct-2014.)
Hypotheses
Ref Expression
syldan.1 |- (R, S) |= T
syldan.2 |- (R, T) |= A
Assertion
Ref Expression
syldan |- (R, S) |= A

Proof of Theorem syldan
StepHypRef Expression
1 syldan.1 . . . . 5 |- (R, S) |= T
21ax-cb1 29 . . . 4 |- (R, S):*
32wctl 33 . . 3 |- R:*
42wctr 34 . . 3 |- S:*
53, 4simpl 22 . 2 |- (R, S) |= R
6 syldan.2 . 2 |- (R, T) |= A
75, 1, 6syl2anc 19 1 |- (R, S) |= A
Colors of variables: type var term
Syntax hints:  kct 10   |= wffMMJ2 11
This theorem was proved from axioms:  ax-syl 15  ax-jca 17  ax-simpl 20  ax-cb1 29  ax-wctl 31  ax-wctr 32
This theorem is referenced by:  alimdv  184
  Copyright terms: Public domain W3C validator