Higher-Order Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > HOLE Home > Th. List > syldan | GIF version |
Description: Syllogism inference. (Contributed by Mario Carneiro, 8-Oct-2014.) |
Ref | Expression |
---|---|
syldan.1 | ⊢ (R, S)⊧T |
syldan.2 | ⊢ (R, T)⊧A |
Ref | Expression |
---|---|
syldan | ⊢ (R, S)⊧A |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | syldan.1 | . . . . 5 ⊢ (R, S)⊧T | |
2 | 1 | ax-cb1 29 | . . . 4 ⊢ (R, S):∗ |
3 | 2 | wctl 33 | . . 3 ⊢ R:∗ |
4 | 2 | wctr 34 | . . 3 ⊢ S:∗ |
5 | 3, 4 | simpl 22 | . 2 ⊢ (R, S)⊧R |
6 | syldan.2 | . 2 ⊢ (R, T)⊧A | |
7 | 5, 1, 6 | syl2anc 19 | 1 ⊢ (R, S)⊧A |
Colors of variables: type var term |
Syntax hints: kct 10 ⊧wffMMJ2 11 |
This theorem was proved from axioms: ax-syl 15 ax-jca 17 ax-simpl 20 ax-cb1 29 ax-wctl 31 ax-wctr 32 |
This theorem is referenced by: alimdv 184 |
Copyright terms: Public domain | W3C validator |