HOLE Home Higher-Order Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HOLE Home  >  Th. List  >  simpl Unicode version

Theorem simpl 22
Description: Extract an assumption from the context. (Contributed by Mario Carneiro, 8-Oct-2014.)
Hypotheses
Ref Expression
ax-simpl.1 |- R:*
ax-simpl.2 |- S:*
Assertion
Ref Expression
simpl |- (R, S) |= R

Proof of Theorem simpl
StepHypRef Expression
1 ax-simpl.1 . 2 |- R:*
2 ax-simpl.2 . 2 |- S:*
31, 2ax-simpl 20 1 |- (R, S) |= R
Colors of variables: type var term
Syntax hints:  *hb 3  kct 10   |= wffMMJ2 11  wffMMJ2t 12
This theorem was proved from axioms:  ax-simpl 20
This theorem is referenced by:  syldan  36  simpld  37  ancoms  54  adantr  55  ct2  58  an32s  60  anassrs  62  dfan2  154  notval2  159  notnot1  160  olc  164  orc  165  ax4e  168  exmid  199  ax2  204  ax8  211  ax11  214  axpow  221
  Copyright terms: Public domain W3C validator