HOLE Home Higher-Order Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HOLE Home  >  Th. List  >  alimdv Unicode version

Theorem alimdv 184
Description: Deduction from Theorem 19.20 of [Margaris] p. 90. (Contributed by Mario Carneiro, 9-Oct-2014.)
Hypothesis
Ref Expression
alimdv.1 |- (R, A) |= B
Assertion
Ref Expression
alimdv |- (R, (A.\x:al A)) |= (A.\x:al B)
Distinct variable groups:   x,R   al,x

Proof of Theorem alimdv
Dummy variable y is distinct from all other variables.
StepHypRef Expression
1 alimdv.1 . . . . . . 7 |- (R, A) |= B
21ax-cb1 29 . . . . . 6 |- (R, A):*
32wctr 34 . . . . 5 |- A:*
43ax4 150 . . . 4 |- (A.\x:al A) |= A
52wctl 33 . . . 4 |- R:*
64, 5adantl 56 . . 3 |- (R, (A.\x:al A)) |= A
76, 1syldan 36 . 2 |- (R, (A.\x:al A)) |= B
8 wv 64 . . 3 |- y:al:al
9 wal 134 . . . 4 |- A.:((al -> *) -> *)
103wl 66 . . . 4 |- \x:al A:(al -> *)
119, 10wc 50 . . 3 |- (A.\x:al A):*
125, 8ax-17 105 . . 3 |- T. |= [(\x:al Ry:al) = R]
139, 8ax-17 105 . . . 4 |- T. |= [(\x:al A.y:al) = A.]
143, 8ax-hbl1 103 . . . 4 |- T. |= [(\x:al \x:al Ay:al) = \x:al A]
159, 10, 8, 13, 14hbc 110 . . 3 |- T. |= [(\x:al (A.\x:al A)y:al) = (A.\x:al A)]
165, 8, 11, 12, 15hbct 155 . 2 |- T. |= [(\x:al (R, (A.\x:al A))y:al) = (R, (A.\x:al A))]
177, 16alrimi 182 1 |- (R, (A.\x:al A)) |= (A.\x:al B)
Colors of variables: type var term
Syntax hints:  tv 1   -> ht 2  *hb 3  kc 5  \kl 6  T.kt 8  kct 10   |= wffMMJ2 11  A.tal 122
This theorem was proved from axioms:  ax-syl 15  ax-jca 17  ax-simpl 20  ax-simpr 21  ax-id 24  ax-trud 26  ax-cb1 29  ax-cb2 30  ax-wctl 31  ax-wctr 32  ax-weq 40  ax-refl 42  ax-eqmp 45  ax-ded 46  ax-wct 47  ax-wc 49  ax-ceq 51  ax-wv 63  ax-wl 65  ax-beta 67  ax-distrc 68  ax-leq 69  ax-distrl 70  ax-wov 71  ax-eqtypi 77  ax-eqtypri 80  ax-hbl1 103  ax-17 105  ax-inst 113  ax-eta 177
This theorem depends on definitions:  df-ov 73  df-al 126  df-an 128
This theorem is referenced by:  exnal1  187
  Copyright terms: Public domain W3C validator