Higher-Order Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > HOLE Home > Th. List > simpl | GIF version |
Description: Extract an assumption from the context. (Contributed by Mario Carneiro, 8-Oct-2014.) |
Ref | Expression |
---|---|
ax-simpl.1 | ⊢ R:∗ |
ax-simpl.2 | ⊢ S:∗ |
Ref | Expression |
---|---|
simpl | ⊢ (R, S)⊧R |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ax-simpl.1 | . 2 ⊢ R:∗ | |
2 | ax-simpl.2 | . 2 ⊢ S:∗ | |
3 | 1, 2 | ax-simpl 20 | 1 ⊢ (R, S)⊧R |
Colors of variables: type var term |
Syntax hints: ∗hb 3 kct 10 ⊧wffMMJ2 11 wffMMJ2t 12 |
This theorem was proved from axioms: ax-simpl 20 |
This theorem is referenced by: syldan 36 simpld 37 ancoms 54 adantr 55 ct2 58 an32s 60 anassrs 62 dfan2 154 notval2 159 notnot1 160 olc 164 orc 165 ax4e 168 exmid 199 ax2 204 ax8 211 ax11 214 axpow 221 |
Copyright terms: Public domain | W3C validator |