Higher-Order Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > HOLE Home > Th. List > distrl | GIF version |
Description: Distribution of lambda abstraction over substitution. (Contributed by Mario Carneiro, 8-Oct-2014.) |
Ref | Expression |
---|---|
distrl.1 | ⊢ A:γ |
distrl.2 | ⊢ B:α |
Ref | Expression |
---|---|
distrl | ⊢ ⊤⊧[(λx:α λy:β AB) = λy:β (λx:α AB)] |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | weq 41 | . 2 ⊢ = :((β → γ) → ((β → γ) → ∗)) | |
2 | distrl.1 | . . . . 5 ⊢ A:γ | |
3 | 2 | wl 66 | . . . 4 ⊢ λy:β A:(β → γ) |
4 | 3 | wl 66 | . . 3 ⊢ λx:α λy:β A:(α → (β → γ)) |
5 | distrl.2 | . . 3 ⊢ B:α | |
6 | 4, 5 | wc 50 | . 2 ⊢ (λx:α λy:β AB):(β → γ) |
7 | 2 | wl 66 | . . . 4 ⊢ λx:α A:(α → γ) |
8 | 7, 5 | wc 50 | . . 3 ⊢ (λx:α AB):γ |
9 | 8 | wl 66 | . 2 ⊢ λy:β (λx:α AB):(β → γ) |
10 | 2, 5 | ax-distrl 70 | . 2 ⊢ ⊤⊧(( = (λx:α λy:β AB))λy:β (λx:α AB)) |
11 | 1, 6, 9, 10 | dfov2 75 | 1 ⊢ ⊤⊧[(λx:α λy:β AB) = λy:β (λx:α AB)] |
Colors of variables: type var term |
Syntax hints: → ht 2 kc 5 λkl 6 = ke 7 ⊤kt 8 [kbr 9 ⊧wffMMJ2 11 wffMMJ2t 12 |
This theorem was proved from axioms: ax-syl 15 ax-jca 17 ax-trud 26 ax-cb1 29 ax-cb2 30 ax-weq 40 ax-refl 42 ax-eqmp 45 ax-wc 49 ax-ceq 51 ax-wl 65 ax-distrl 70 ax-wov 71 |
This theorem depends on definitions: df-ov 73 |
This theorem is referenced by: hbl 112 ovl 117 |
Copyright terms: Public domain | W3C validator |