Higher-Order Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > HOLE Home > Th. List > leq | GIF version |
Description: Equality theorem for lambda abstraction. (Contributed by Mario Carneiro, 8-Oct-2014.) |
Ref | Expression |
---|---|
leq.1 | ⊢ A:β |
leq.2 | ⊢ R⊧[A = B] |
Ref | Expression |
---|---|
leq | ⊢ R⊧[λx:α A = λx:α B] |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | weq 41 | . 2 ⊢ = :((α → β) → ((α → β) → ∗)) | |
2 | leq.1 | . . 3 ⊢ A:β | |
3 | 2 | wl 66 | . 2 ⊢ λx:α A:(α → β) |
4 | leq.2 | . . . 4 ⊢ R⊧[A = B] | |
5 | 2, 4 | eqtypi 78 | . . 3 ⊢ B:β |
6 | 5 | wl 66 | . 2 ⊢ λx:α B:(α → β) |
7 | weq 41 | . . . 4 ⊢ = :(β → (β → ∗)) | |
8 | 7, 2, 5, 4 | dfov1 74 | . . 3 ⊢ R⊧(( = A)B) |
9 | 2, 5, 8 | ax-leq 69 | . 2 ⊢ R⊧(( = λx:α A)λx:α B) |
10 | 1, 3, 6, 9 | dfov2 75 | 1 ⊢ R⊧[λx:α A = λx:α B] |
Colors of variables: type var term |
Syntax hints: → ht 2 λkl 6 = ke 7 [kbr 9 ⊧wffMMJ2 11 wffMMJ2t 12 |
This theorem was proved from axioms: ax-syl 15 ax-jca 17 ax-trud 26 ax-cb1 29 ax-cb2 30 ax-weq 40 ax-refl 42 ax-eqmp 45 ax-wc 49 ax-ceq 51 ax-wl 65 ax-leq 69 ax-wov 71 ax-eqtypi 77 |
This theorem depends on definitions: df-ov 73 |
This theorem is referenced by: hbxfrf 107 hbl 112 exval 143 euval 144 orval 147 anval 148 alrimiv 151 dfan2 154 olc 164 orc 165 exlimdv2 166 eta 178 cbvf 179 leqf 181 exlimd 183 ac 197 exmid 199 exnal 201 axpow 221 axun 222 |
Copyright terms: Public domain | W3C validator |