Higher-Order Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > HOLE Home > Th. List > ax-refl | GIF version |
Description: Reflexivity of equality. (Contributed by Mario Carneiro, 7-Oct-2014.) |
Ref | Expression |
---|---|
ax-refl.1 | ⊢ A:α |
Ref | Expression |
---|---|
ax-refl | ⊢ ⊤⊧(( = A)A) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | kt 8 | . 2 term ⊤ | |
2 | ke 7 | . . . 4 term = | |
3 | ta | . . . 4 term A | |
4 | 2, 3 | kc 5 | . . 3 term ( = A) |
5 | 4, 3 | kc 5 | . 2 term (( = A)A) |
6 | 1, 5 | wffMMJ2 11 | 1 wff ⊤⊧(( = A)A) |
Colors of variables: type var term |
This axiom is referenced by: wtru 43 eqcomx 52 eqid 83 |
Copyright terms: Public domain | W3C validator |