Higher-Order Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > HOLE Home > Th. List > wtru | GIF version |
Description: Truth type. (Contributed by Mario Carneiro, 10-Oct-2014.) |
Ref | Expression |
---|---|
wtru | ⊢ ⊤:∗ |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | weq 41 | . . 3 ⊢ = :(∗ → (∗ → ∗)) | |
2 | 1 | ax-refl 42 | . 2 ⊢ ⊤⊧(( = = ) = ) |
3 | 2 | ax-cb1 29 | 1 ⊢ ⊤:∗ |
Colors of variables: type var term |
Syntax hints: → ht 2 ∗hb 3 kc 5 = ke 7 ⊤kt 8 wffMMJ2t 12 |
This theorem was proved from axioms: ax-cb1 29 ax-weq 40 ax-refl 42 |
This theorem is referenced by: tru 44 dedi 85 eqtru 86 hbth 109 hbov 111 ovl 117 wal 134 wan 136 alval 142 anval 148 alrimiv 151 dfan2 154 hbct 155 olc 164 orc 165 alrimi 182 exlimd 183 alnex 186 exnal1 187 dfex2 198 exmid 199 ax1 203 ax2 204 ax3 205 ax5 207 ax7 209 ax8 211 ax9 212 ax10 213 ax11 214 ax13 216 ax14 217 axext 219 axrep 220 axpow 221 axun 222 |
Copyright terms: Public domain | W3C validator |