Higher-Order Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > HOLE Home > Th. List > eqid | GIF version |
Description: Reflexivity of equality. (Contributed by Mario Carneiro, 7-Oct-2014.) |
Ref | Expression |
---|---|
eqid.1 | ⊢ R:∗ |
eqid.2 | ⊢ A:α |
Ref | Expression |
---|---|
eqid | ⊢ R⊧[A = A] |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | weq 41 | . 2 ⊢ = :(α → (α → ∗)) | |
2 | eqid.2 | . 2 ⊢ A:α | |
3 | eqid.1 | . . 3 ⊢ R:∗ | |
4 | 2 | ax-refl 42 | . . 3 ⊢ ⊤⊧(( = A)A) |
5 | 3, 4 | a1i 28 | . 2 ⊢ R⊧(( = A)A) |
6 | 1, 2, 2, 5 | dfov2 75 | 1 ⊢ R⊧[A = A] |
Colors of variables: type var term |
Syntax hints: ∗hb 3 kc 5 = ke 7 [kbr 9 ⊧wffMMJ2 11 wffMMJ2t 12 |
This theorem was proved from axioms: ax-syl 15 ax-jca 17 ax-trud 26 ax-cb1 29 ax-cb2 30 ax-weq 40 ax-refl 42 ax-eqmp 45 ax-wc 49 ax-ceq 51 ax-wov 71 |
This theorem depends on definitions: df-ov 73 |
This theorem is referenced by: ceq1 89 ceq2 90 oveq1 99 oveq12 100 oveq2 101 oveq 102 insti 114 dfan2 154 leqf 181 ax9 212 axrep 220 axpow 221 |
Copyright terms: Public domain | W3C validator |