Higher-Order Logic Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  HOLE Home  >  Th. List  >  eqid GIF version

Theorem eqid 83
 Description: Reflexivity of equality. (Contributed by Mario Carneiro, 7-Oct-2014.)
Hypotheses
Ref Expression
eqid.1 R:∗
eqid.2 A:α
Assertion
Ref Expression
eqid R⊧[A = A]

Proof of Theorem eqid
StepHypRef Expression
1 weq 41 . 2 = :(α → (α → ∗))
2 eqid.2 . 2 A:α
3 eqid.1 . . 3 R:∗
42ax-refl 42 . . 3 ⊤⊧(( = A)A)
53, 4a1i 28 . 2 R⊧(( = A)A)
61, 2, 2, 5dfov2 75 1 R⊧[A = A]
 Colors of variables: type var term Syntax hints:  ∗hb 3  kc 5   = ke 7  [kbr 9  ⊧wffMMJ2 11  wffMMJ2t 12 This theorem was proved from axioms:  ax-syl 15  ax-jca 17  ax-trud 26  ax-cb1 29  ax-cb2 30  ax-weq 40  ax-refl 42  ax-eqmp 45  ax-wc 49  ax-ceq 51  ax-wov 71 This theorem depends on definitions:  df-ov 73 This theorem is referenced by:  ceq1  89  ceq2  90  oveq1  99  oveq12  100  oveq2  101  oveq  102  insti  114  dfan2  154  leqf  181  ax9  212  axrep  220  axpow  221
 Copyright terms: Public domain W3C validator