Higher-Order Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > HOLE Home > Th. List > alval | GIF version |
Description: Value of the for all predicate. (Contributed by Mario Carneiro, 8-Oct-2014.) |
Ref | Expression |
---|---|
alval.1 | ⊢ F:(α → ∗) |
Ref | Expression |
---|---|
alval | ⊢ ⊤⊧[(∀F) = [F = λx:α ⊤]] |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | wal 134 | . . 3 ⊢ ∀:((α → ∗) → ∗) | |
2 | alval.1 | . . 3 ⊢ F:(α → ∗) | |
3 | 1, 2 | wc 50 | . 2 ⊢ (∀F):∗ |
4 | df-al 126 | . . 3 ⊢ ⊤⊧[∀ = λp:(α → ∗) [p:(α → ∗) = λx:α ⊤]] | |
5 | 1, 2, 4 | ceq1 89 | . 2 ⊢ ⊤⊧[(∀F) = (λp:(α → ∗) [p:(α → ∗) = λx:α ⊤]F)] |
6 | wv 64 | . . . 4 ⊢ p:(α → ∗):(α → ∗) | |
7 | wtru 43 | . . . . 5 ⊢ ⊤:∗ | |
8 | 7 | wl 66 | . . . 4 ⊢ λx:α ⊤:(α → ∗) |
9 | 6, 8 | weqi 76 | . . 3 ⊢ [p:(α → ∗) = λx:α ⊤]:∗ |
10 | weq 41 | . . . 4 ⊢ = :((α → ∗) → ((α → ∗) → ∗)) | |
11 | 6, 2 | weqi 76 | . . . . 5 ⊢ [p:(α → ∗) = F]:∗ |
12 | 11 | id 25 | . . . 4 ⊢ [p:(α → ∗) = F]⊧[p:(α → ∗) = F] |
13 | 10, 6, 8, 12 | oveq1 99 | . . 3 ⊢ [p:(α → ∗) = F]⊧[[p:(α → ∗) = λx:α ⊤] = [F = λx:α ⊤]] |
14 | 9, 2, 13 | cl 116 | . 2 ⊢ ⊤⊧[(λp:(α → ∗) [p:(α → ∗) = λx:α ⊤]F) = [F = λx:α ⊤]] |
15 | 3, 5, 14 | eqtri 95 | 1 ⊢ ⊤⊧[(∀F) = [F = λx:α ⊤]] |
Colors of variables: type var term |
Syntax hints: tv 1 → ht 2 ∗hb 3 kc 5 λkl 6 = ke 7 ⊤kt 8 [kbr 9 ⊧wffMMJ2 11 wffMMJ2t 12 ∀tal 122 |
This theorem was proved from axioms: ax-syl 15 ax-jca 17 ax-simpl 20 ax-simpr 21 ax-id 24 ax-trud 26 ax-cb1 29 ax-cb2 30 ax-wctl 31 ax-wctr 32 ax-weq 40 ax-refl 42 ax-eqmp 45 ax-wc 49 ax-ceq 51 ax-wv 63 ax-wl 65 ax-beta 67 ax-distrc 68 ax-leq 69 ax-wov 71 ax-eqtypi 77 ax-eqtypri 80 ax-hbl1 103 ax-17 105 ax-inst 113 |
This theorem depends on definitions: df-ov 73 df-al 126 |
This theorem is referenced by: ax4g 149 alrimiv 151 olc 164 orc 165 alrimi 182 |
Copyright terms: Public domain | W3C validator |