Higher-Order Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > HOLE Home > Th. List > wal | GIF version |
Description: For all type. (Contributed by Mario Carneiro, 8-Oct-2014.) |
Ref | Expression |
---|---|
wal | ⊢ ∀:((α → ∗) → ∗) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | wv 64 | . . . 4 ⊢ p:(α → ∗):(α → ∗) | |
2 | wtru 43 | . . . . 5 ⊢ ⊤:∗ | |
3 | 2 | wl 66 | . . . 4 ⊢ λx:α ⊤:(α → ∗) |
4 | 1, 3 | weqi 76 | . . 3 ⊢ [p:(α → ∗) = λx:α ⊤]:∗ |
5 | 4 | wl 66 | . 2 ⊢ λp:(α → ∗) [p:(α → ∗) = λx:α ⊤]:((α → ∗) → ∗) |
6 | df-al 126 | . 2 ⊢ ⊤⊧[∀ = λp:(α → ∗) [p:(α → ∗) = λx:α ⊤]] | |
7 | 5, 6 | eqtypri 81 | 1 ⊢ ∀:((α → ∗) → ∗) |
Colors of variables: type var term |
Syntax hints: tv 1 → ht 2 ∗hb 3 λkl 6 = ke 7 ⊤kt 8 [kbr 9 wffMMJ2t 12 ∀tal 122 |
This theorem was proved from axioms: ax-cb1 29 ax-weq 40 ax-refl 42 ax-wv 63 ax-wl 65 ax-wov 71 ax-eqtypri 80 |
This theorem depends on definitions: df-al 126 |
This theorem is referenced by: wfal 135 wex 139 wor 140 weu 141 alval 142 exval 143 euval 144 orval 147 ax4g 149 exlimdv2 166 ax4e 168 exlimd 183 alimdv 184 alnex 186 exnal1 187 ac 197 exnal 201 ax5 207 ax6 208 ax7 209 ax9 212 ax10 213 ax11 214 ax12 215 axext 219 axrep 220 axpow 221 axun 222 |
Copyright terms: Public domain | W3C validator |