Step | Hyp | Ref
| Expression |
1 | | wim 137 |
. . 3
⊢ ⇒ :(∗
→ (∗ → ∗)) |
2 | | imval.1 |
. . 3
⊢ A:∗ |
3 | | imval.2 |
. . 3
⊢ B:∗ |
4 | 1, 2, 3 | wov 72 |
. 2
⊢ [A ⇒ B]:∗ |
5 | | df-im 129 |
. . 3
⊢ ⊤⊧[
⇒ = λp:∗
λq:∗ [[p:∗ ∧
q:∗] = p:∗]] |
6 | 1, 2, 3, 5 | oveq 102 |
. 2
⊢
⊤⊧[[A ⇒ B] = [Aλp:∗ λq:∗ [[p:∗ ∧
q:∗] = p:∗]B]] |
7 | | wan 136 |
. . . . 5
⊢ ∧ :(∗ → (∗ →
∗)) |
8 | | wv 64 |
. . . . 5
⊢ p:∗:∗ |
9 | | wv 64 |
. . . . 5
⊢ q:∗:∗ |
10 | 7, 8, 9 | wov 72 |
. . . 4
⊢ [p:∗ ∧
q:∗]:∗ |
11 | 10, 8 | weqi 76 |
. . 3
⊢ [[p:∗ ∧
q:∗] = p:∗]:∗ |
12 | | weq 41 |
. . . 4
⊢ = :(∗
→ (∗ → ∗)) |
13 | 8, 2 | weqi 76 |
. . . . . 6
⊢ [p:∗ = A]:∗ |
14 | 13 | id 25 |
. . . . 5
⊢ [p:∗ = A]⊧[p:∗ = A] |
15 | 7, 8, 9, 14 | oveq1 99 |
. . . 4
⊢ [p:∗ = A]⊧[[p:∗ ∧
q:∗] = [A ∧ q:∗]] |
16 | 12, 10, 8, 15, 14 | oveq12 100 |
. . 3
⊢ [p:∗ = A]⊧[[[p:∗ ∧
q:∗] = p:∗] = [[A ∧ q:∗] = A]] |
17 | 7, 2, 9 | wov 72 |
. . . 4
⊢ [A ∧ q:∗]:∗ |
18 | 9, 3 | weqi 76 |
. . . . . 6
⊢ [q:∗ = B]:∗ |
19 | 18 | id 25 |
. . . . 5
⊢ [q:∗ = B]⊧[q:∗ = B] |
20 | 7, 2, 9, 19 | oveq2 101 |
. . . 4
⊢ [q:∗ = B]⊧[[A
∧ q:∗] = [A
∧ B]] |
21 | 12, 17, 2, 20 | oveq1 99 |
. . 3
⊢ [q:∗ = B]⊧[[[A
∧ q:∗] = A]
= [[A ∧
B] = A]] |
22 | 11, 2, 3, 16, 21 | ovl 117 |
. 2
⊢
⊤⊧[[Aλp:∗ λq:∗ [[p:∗ ∧
q:∗] = p:∗]B] =
[[A ∧
B] = A]] |
23 | 4, 6, 22 | eqtri 95 |
1
⊢
⊤⊧[[A ⇒ B] = [[A ∧ B] = A]] |