Higher-Order Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > HOLE Home > Th. List > wim | GIF version |
Description: Implication type. (Contributed by Mario Carneiro, 8-Oct-2014.) |
Ref | Expression |
---|---|
wim | ⊢ ⇒ :(∗ → (∗ → ∗)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | wan 136 | . . . . . 6 ⊢ ∧ :(∗ → (∗ → ∗)) | |
2 | wv 64 | . . . . . 6 ⊢ p:∗:∗ | |
3 | wv 64 | . . . . . 6 ⊢ q:∗:∗ | |
4 | 1, 2, 3 | wov 72 | . . . . 5 ⊢ [p:∗ ∧ q:∗]:∗ |
5 | 4, 2 | weqi 76 | . . . 4 ⊢ [[p:∗ ∧ q:∗] = p:∗]:∗ |
6 | 5 | wl 66 | . . 3 ⊢ λq:∗ [[p:∗ ∧ q:∗] = p:∗]:(∗ → ∗) |
7 | 6 | wl 66 | . 2 ⊢ λp:∗ λq:∗ [[p:∗ ∧ q:∗] = p:∗]:(∗ → (∗ → ∗)) |
8 | df-im 129 | . 2 ⊢ ⊤⊧[ ⇒ = λp:∗ λq:∗ [[p:∗ ∧ q:∗] = p:∗]] | |
9 | 7, 8 | eqtypri 81 | 1 ⊢ ⇒ :(∗ → (∗ → ∗)) |
Colors of variables: type var term |
Syntax hints: tv 1 → ht 2 ∗hb 3 λkl 6 = ke 7 ⊤kt 8 [kbr 9 wffMMJ2t 12 ∧ tan 119 ⇒ tim 121 |
This theorem was proved from axioms: ax-cb1 29 ax-weq 40 ax-refl 42 ax-wv 63 ax-wl 65 ax-wov 71 ax-eqtypri 80 |
This theorem depends on definitions: df-an 128 df-im 129 |
This theorem is referenced by: wnot 138 wex 139 wor 140 exval 143 notval 145 imval 146 orval 147 notval2 159 ecase 163 olc 164 orc 165 exlimdv2 166 exlimdv 167 ax4e 168 exlimd 183 ac 197 ax2 204 ax3 205 ax5 207 ax11 214 axrep 220 axpow 221 axun 222 |
Copyright terms: Public domain | W3C validator |