| Higher-Order Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > HOLE Home > Th. List > alimdv | GIF version | ||
| Description: Deduction from Theorem 19.20 of [Margaris] p. 90. (Contributed by Mario Carneiro, 9-Oct-2014.) |
| Ref | Expression |
|---|---|
| alimdv.1 | ⊢ (R, A)⊧B |
| Ref | Expression |
|---|---|
| alimdv | ⊢ (R, (∀λx:α A))⊧(∀λx:α B) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | alimdv.1 | . . . . . . 7 ⊢ (R, A)⊧B | |
| 2 | 1 | ax-cb1 29 | . . . . . 6 ⊢ (R, A):∗ |
| 3 | 2 | wctr 34 | . . . . 5 ⊢ A:∗ |
| 4 | 3 | ax4 150 | . . . 4 ⊢ (∀λx:α A)⊧A |
| 5 | 2 | wctl 33 | . . . 4 ⊢ R:∗ |
| 6 | 4, 5 | adantl 56 | . . 3 ⊢ (R, (∀λx:α A))⊧A |
| 7 | 6, 1 | syldan 36 | . 2 ⊢ (R, (∀λx:α A))⊧B |
| 8 | wv 64 | . . 3 ⊢ y:α:α | |
| 9 | wal 134 | . . . 4 ⊢ ∀:((α → ∗) → ∗) | |
| 10 | 3 | wl 66 | . . . 4 ⊢ λx:α A:(α → ∗) |
| 11 | 9, 10 | wc 50 | . . 3 ⊢ (∀λx:α A):∗ |
| 12 | 5, 8 | ax-17 105 | . . 3 ⊢ ⊤⊧[(λx:α Ry:α) = R] |
| 13 | 9, 8 | ax-17 105 | . . . 4 ⊢ ⊤⊧[(λx:α ∀y:α) = ∀] |
| 14 | 3, 8 | ax-hbl1 103 | . . . 4 ⊢ ⊤⊧[(λx:α λx:α Ay:α) = λx:α A] |
| 15 | 9, 10, 8, 13, 14 | hbc 110 | . . 3 ⊢ ⊤⊧[(λx:α (∀λx:α A)y:α) = (∀λx:α A)] |
| 16 | 5, 8, 11, 12, 15 | hbct 155 | . 2 ⊢ ⊤⊧[(λx:α (R, (∀λx:α A))y:α) = (R, (∀λx:α A))] |
| 17 | 7, 16 | alrimi 182 | 1 ⊢ (R, (∀λx:α A))⊧(∀λx:α B) |
| Colors of variables: type var term |
| Syntax hints: tv 1 → ht 2 ∗hb 3 kc 5 λkl 6 ⊤kt 8 kct 10 ⊧wffMMJ2 11 ∀tal 122 |
| This theorem was proved from axioms: ax-syl 15 ax-jca 17 ax-simpl 20 ax-simpr 21 ax-id 24 ax-trud 26 ax-cb1 29 ax-cb2 30 ax-wctl 31 ax-wctr 32 ax-weq 40 ax-refl 42 ax-eqmp 45 ax-ded 46 ax-wct 47 ax-wc 49 ax-ceq 51 ax-wv 63 ax-wl 65 ax-beta 67 ax-distrc 68 ax-leq 69 ax-distrl 70 ax-wov 71 ax-eqtypi 77 ax-eqtypri 80 ax-hbl1 103 ax-17 105 ax-inst 113 ax-eta 177 |
| This theorem depends on definitions: df-ov 73 df-al 126 df-an 128 |
| This theorem is referenced by: exnal1 187 |
| Copyright terms: Public domain | W3C validator |