Step | Hyp | Ref
| Expression |
1 | | wat 193 |
. . 3
⊢
ε:((∗ → ∗) → ∗) |
2 | | wor 140 |
. . . . 5
⊢ ∨ :(∗ → (∗ →
∗)) |
3 | | wv 64 |
. . . . 5
⊢ x:∗:∗ |
4 | | exmid.1 |
. . . . 5
⊢ A:∗ |
5 | 2, 3, 4 | wov 72 |
. . . 4
⊢ [x:∗ ∨
A]:∗ |
6 | 5 | wl 66 |
. . 3
⊢
λx:∗ [x:∗ ∨
A]:(∗ →
∗) |
7 | 1, 6 | wc 50 |
. 2
⊢
(ελx:∗
[x:∗
∨ A]):∗ |
8 | | wnot 138 |
. . . 4
⊢ ¬ :(∗
→ ∗) |
9 | 8, 4 | wc 50 |
. . 3
⊢ (¬ A):∗ |
10 | 2, 4, 9 | wov 72 |
. 2
⊢ [A ∨ (¬ A)]:∗ |
11 | | wtru 43 |
. . . . . 6
⊢
⊤:∗ |
12 | 11, 4 | orc 165 |
. . . . 5
⊢
⊤⊧[⊤ ∨ A] |
13 | 3, 11 | weqi 76 |
. . . . . . . 8
⊢ [x:∗ = ⊤]:∗ |
14 | 13 | id 25 |
. . . . . . 7
⊢ [x:∗ = ⊤]⊧[x:∗ = ⊤] |
15 | 2, 3, 4, 14 | oveq1 99 |
. . . . . 6
⊢ [x:∗ = ⊤]⊧[[x:∗ ∨
A] = [⊤
∨ A]] |
16 | 5, 11, 15 | cl 116 |
. . . . 5
⊢
⊤⊧[(λx:∗ [x:∗ ∨
A]⊤) = [⊤ ∨ A]] |
17 | 12, 16 | mpbir 87 |
. . . 4
⊢
⊤⊧(λx:∗ [x:∗ ∨
A]⊤) |
18 | 6, 11 | ac 197 |
. . . 4
⊢
(λx:∗ [x:∗ ∨
A]⊤)⊧(λx:∗ [x:∗ ∨
A](ελx:∗ [x:∗ ∨
A])) |
19 | 17, 18 | syl 16 |
. . 3
⊢
⊤⊧(λx:∗ [x:∗ ∨
A](ελx:∗ [x:∗ ∨
A])) |
20 | 3, 7 | weqi 76 |
. . . . . 6
⊢ [x:∗ = (ελx:∗ [x:∗ ∨
A])]:∗ |
21 | 20 | id 25 |
. . . . 5
⊢ [x:∗ = (ελx:∗ [x:∗ ∨
A])]⊧[x:∗ = (ελx:∗ [x:∗ ∨
A])] |
22 | 2, 3, 4, 21 | oveq1 99 |
. . . 4
⊢ [x:∗ = (ελx:∗ [x:∗ ∨
A])]⊧[[x:∗ ∨
A] = [(ελx:∗ [x:∗ ∨
A]) ∨
A]] |
23 | | wv 64 |
. . . . 5
⊢ y:∗:∗ |
24 | 2, 23 | ax-17 105 |
. . . . 5
⊢
⊤⊧[(λx:∗ ∨
y:∗) =
∨ ] |
25 | 1, 23 | ax-17 105 |
. . . . . 6
⊢
⊤⊧[(λx:∗ εy:∗) = ε] |
26 | 5, 23 | ax-hbl1 103 |
. . . . . 6
⊢
⊤⊧[(λx:∗ λx:∗ [x:∗ ∨
A]y:∗) = λx:∗ [x:∗ ∨
A]] |
27 | 1, 6, 23, 25, 26 | hbc 110 |
. . . . 5
⊢
⊤⊧[(λx:∗ (ελx:∗ [x:∗ ∨
A])y:∗) = (ελx:∗ [x:∗ ∨
A])] |
28 | 4, 23 | ax-17 105 |
. . . . 5
⊢
⊤⊧[(λx:∗ Ay:∗) =
A] |
29 | 2, 7, 23, 4, 24, 27, 28 | hbov 111 |
. . . 4
⊢
⊤⊧[(λx:∗ [(ελx:∗ [x:∗ ∨
A]) ∨
A]y:∗) = [(ελx:∗ [x:∗ ∨
A]) ∨
A]] |
30 | 5, 7, 22, 29, 27 | clf 115 |
. . 3
⊢
⊤⊧[(λx:∗ [x:∗ ∨
A](ελx:∗ [x:∗ ∨
A])) = [(ελx:∗ [x:∗ ∨
A]) ∨
A]] |
31 | 19, 30 | mpbi 82 |
. 2
⊢
⊤⊧[(ελx:∗ [x:∗ ∨
A]) ∨
A] |
32 | 8, 3 | wc 50 |
. . . . . . . 8
⊢ (¬ x:∗):∗ |
33 | 2, 32, 4 | wov 72 |
. . . . . . 7
⊢ [(¬ x:∗) ∨
A]:∗ |
34 | 33 | wl 66 |
. . . . . 6
⊢
λx:∗ [(¬
x:∗)
∨ A]:(∗ →
∗) |
35 | 1, 34 | wc 50 |
. . . . 5
⊢
(ελx:∗
[(¬ x:∗)
∨ A]):∗ |
36 | 8, 35 | wc 50 |
. . . 4
⊢ (¬
(ελx:∗ [(¬
x:∗)
∨ A])):∗ |
37 | | wfal 135 |
. . . . . . . . 9
⊢
⊥:∗ |
38 | 3, 37 | weqi 76 |
. . . . . . . . . . . . 13
⊢ [x:∗ = ⊥]:∗ |
39 | 38 | id 25 |
. . . . . . . . . . . 12
⊢ [x:∗ = ⊥]⊧[x:∗ = ⊥] |
40 | 8, 3, 39 | ceq2 90 |
. . . . . . . . . . 11
⊢ [x:∗ = ⊥]⊧[(¬ x:∗) = (¬ ⊥)] |
41 | 11, 37 | simpr 23 |
. . . . . . . . . . . . . . . 16
⊢ (⊤,
⊥)⊧⊥ |
42 | 41 | ex 158 |
. . . . . . . . . . . . . . 15
⊢
⊤⊧[⊥ ⇒ ⊥] |
43 | 37 | notval 145 |
. . . . . . . . . . . . . . 15
⊢
⊤⊧[(¬ ⊥) = [⊥ ⇒
⊥]] |
44 | 42, 43 | mpbir 87 |
. . . . . . . . . . . . . 14
⊢
⊤⊧(¬ ⊥) |
45 | 44 | eqtru 86 |
. . . . . . . . . . . . 13
⊢
⊤⊧[⊤ = (¬ ⊥)] |
46 | 11, 45 | eqcomi 79 |
. . . . . . . . . . . 12
⊢
⊤⊧[(¬ ⊥) = ⊤] |
47 | 38, 46 | a1i 28 |
. . . . . . . . . . 11
⊢ [x:∗ = ⊥]⊧[(¬ ⊥) =
⊤] |
48 | 32, 40, 47 | eqtri 95 |
. . . . . . . . . 10
⊢ [x:∗ = ⊥]⊧[(¬ x:∗) = ⊤] |
49 | 2, 32, 4, 48 | oveq1 99 |
. . . . . . . . 9
⊢ [x:∗ = ⊥]⊧[[(¬ x:∗) ∨
A] = [⊤
∨ A]] |
50 | 33, 37, 49 | cl 116 |
. . . . . . . 8
⊢
⊤⊧[(λx:∗ [(¬ x:∗) ∨
A]⊥) = [⊤ ∨ A]] |
51 | 12, 50 | mpbir 87 |
. . . . . . 7
⊢
⊤⊧(λx:∗ [(¬ x:∗) ∨
A]⊥) |
52 | 34, 37 | ac 197 |
. . . . . . 7
⊢
(λx:∗ [(¬
x:∗)
∨ A]⊥)⊧(λx:∗ [(¬ x:∗) ∨
A](ελx:∗ [(¬ x:∗) ∨
A])) |
53 | 51, 52 | syl 16 |
. . . . . 6
⊢
⊤⊧(λx:∗ [(¬ x:∗) ∨
A](ελx:∗ [(¬ x:∗) ∨
A])) |
54 | 3, 35 | weqi 76 |
. . . . . . . . . 10
⊢ [x:∗ = (ελx:∗ [(¬ x:∗) ∨
A])]:∗ |
55 | 54 | id 25 |
. . . . . . . . 9
⊢ [x:∗ = (ελx:∗ [(¬ x:∗) ∨
A])]⊧[x:∗ = (ελx:∗ [(¬ x:∗) ∨
A])] |
56 | 8, 3, 55 | ceq2 90 |
. . . . . . . 8
⊢ [x:∗ = (ελx:∗ [(¬ x:∗) ∨
A])]⊧[(¬ x:∗) = (¬
(ελx:∗ [(¬
x:∗)
∨ A]))] |
57 | 2, 32, 4, 56 | oveq1 99 |
. . . . . . 7
⊢ [x:∗ = (ελx:∗ [(¬ x:∗) ∨
A])]⊧[[(¬ x:∗) ∨
A] = [(¬
(ελx:∗ [(¬
x:∗)
∨ A]))
∨ A]] |
58 | 8, 23 | ax-17 105 |
. . . . . . . . 9
⊢
⊤⊧[(λx:∗ ¬ y:∗) = ¬ ] |
59 | 33, 23 | ax-hbl1 103 |
. . . . . . . . . 10
⊢
⊤⊧[(λx:∗ λx:∗ [(¬ x:∗) ∨
A]y:∗) = λx:∗ [(¬ x:∗) ∨
A]] |
60 | 1, 34, 23, 25, 59 | hbc 110 |
. . . . . . . . 9
⊢
⊤⊧[(λx:∗ (ελx:∗ [(¬ x:∗) ∨
A])y:∗) = (ελx:∗ [(¬ x:∗) ∨
A])] |
61 | 8, 35, 23, 58, 60 | hbc 110 |
. . . . . . . 8
⊢
⊤⊧[(λx:∗ (¬ (ελx:∗ [(¬ x:∗) ∨
A]))y:∗) = (¬
(ελx:∗ [(¬
x:∗)
∨ A]))] |
62 | 2, 36, 23, 4, 24, 61, 28 | hbov 111 |
. . . . . . 7
⊢
⊤⊧[(λx:∗ [(¬ (ελx:∗ [(¬ x:∗) ∨
A])) ∨
A]y:∗) = [(¬
(ελx:∗ [(¬
x:∗)
∨ A]))
∨ A]] |
63 | 33, 35, 57, 62, 60 | clf 115 |
. . . . . 6
⊢
⊤⊧[(λx:∗ [(¬ x:∗) ∨
A](ελx:∗ [(¬ x:∗) ∨
A])) = [(¬
(ελx:∗ [(¬
x:∗)
∨ A]))
∨ A]] |
64 | 53, 63 | mpbi 82 |
. . . . 5
⊢
⊤⊧[(¬ (ελx:∗ [(¬ x:∗) ∨
A])) ∨
A] |
65 | 7, 64 | a1i 28 |
. . . 4
⊢
(ελx:∗
[x:∗
∨ A])⊧[(¬
(ελx:∗ [(¬
x:∗)
∨ A]))
∨ A] |
66 | 7, 36 | wct 48 |
. . . . . . . . . . 11
⊢
((ελx:∗
[x:∗
∨ A]), (¬
(ελx:∗ [(¬
x:∗)
∨ A]))):∗ |
67 | 66, 4 | simpl 22 |
. . . . . . . . . 10
⊢
(((ελx:∗ [x:∗ ∨
A]), (¬
(ελx:∗ [(¬
x:∗)
∨ A]))), A)⊧((ελx:∗ [x:∗ ∨
A]), (¬
(ελx:∗ [(¬
x:∗)
∨ A]))) |
68 | 67 | simpld 37 |
. . . . . . . . 9
⊢
(((ελx:∗ [x:∗ ∨
A]), (¬
(ελx:∗ [(¬
x:∗)
∨ A]))), A)⊧(ελx:∗ [x:∗ ∨
A]) |
69 | 3, 4 | olc 164 |
. . . . . . . . . . . . . . 15
⊢ A⊧[x:∗ ∨
A] |
70 | 69 | eqtru 86 |
. . . . . . . . . . . . . 14
⊢ A⊧[⊤ = [x:∗ ∨
A]] |
71 | 11, 70 | eqcomi 79 |
. . . . . . . . . . . . 13
⊢ A⊧[[x:∗ ∨
A] = ⊤] |
72 | 32, 4 | olc 164 |
. . . . . . . . . . . . . 14
⊢ A⊧[(¬ x:∗) ∨
A] |
73 | 72 | eqtru 86 |
. . . . . . . . . . . . 13
⊢ A⊧[⊤ = [(¬ x:∗) ∨
A]] |
74 | 5, 71, 73 | eqtri 95 |
. . . . . . . . . . . 12
⊢ A⊧[[x:∗ ∨
A] = [(¬ x:∗) ∨
A]] |
75 | 5, 74 | leq 91 |
. . . . . . . . . . 11
⊢ A⊧[λx:∗ [x:∗ ∨
A] = λx:∗ [(¬ x:∗) ∨
A]] |
76 | 1, 6, 75 | ceq2 90 |
. . . . . . . . . 10
⊢ A⊧[(ελx:∗ [x:∗ ∨
A]) = (ελx:∗ [(¬ x:∗) ∨
A])] |
77 | 76, 66 | adantl 56 |
. . . . . . . . 9
⊢
(((ελx:∗ [x:∗ ∨
A]), (¬
(ελx:∗ [(¬
x:∗)
∨ A]))), A)⊧[(ελx:∗ [x:∗ ∨
A]) = (ελx:∗ [(¬ x:∗) ∨
A])] |
78 | 68, 77 | mpbi 82 |
. . . . . . . 8
⊢
(((ελx:∗ [x:∗ ∨
A]), (¬
(ελx:∗ [(¬
x:∗)
∨ A]))), A)⊧(ελx:∗ [(¬ x:∗) ∨
A]) |
79 | 67 | simprd 38 |
. . . . . . . . 9
⊢
(((ελx:∗ [x:∗ ∨
A]), (¬
(ελx:∗ [(¬
x:∗)
∨ A]))), A)⊧(¬ (ελx:∗ [(¬ x:∗) ∨
A])) |
80 | 67 | ax-cb1 29 |
. . . . . . . . . 10
⊢
(((ελx:∗ [x:∗ ∨
A]), (¬
(ελx:∗ [(¬
x:∗)
∨ A]))), A):∗ |
81 | 35 | notval 145 |
. . . . . . . . . 10
⊢
⊤⊧[(¬ (ελx:∗ [(¬ x:∗) ∨
A])) = [(ελx:∗ [(¬ x:∗) ∨
A]) ⇒ ⊥]] |
82 | 80, 81 | a1i 28 |
. . . . . . . . 9
⊢
(((ελx:∗ [x:∗ ∨
A]), (¬
(ελx:∗ [(¬
x:∗)
∨ A]))), A)⊧[(¬ (ελx:∗ [(¬ x:∗) ∨
A])) = [(ελx:∗ [(¬ x:∗) ∨
A]) ⇒ ⊥]] |
83 | 79, 82 | mpbi 82 |
. . . . . . . 8
⊢
(((ελx:∗ [x:∗ ∨
A]), (¬
(ελx:∗ [(¬
x:∗)
∨ A]))), A)⊧[(ελx:∗ [(¬ x:∗) ∨
A]) ⇒ ⊥] |
84 | 37, 78, 83 | mpd 156 |
. . . . . . 7
⊢
(((ελx:∗ [x:∗ ∨
A]), (¬
(ελx:∗ [(¬
x:∗)
∨ A]))), A)⊧⊥ |
85 | 84 | ex 158 |
. . . . . 6
⊢
((ελx:∗
[x:∗
∨ A]), (¬
(ελx:∗ [(¬
x:∗)
∨ A])))⊧[A ⇒ ⊥] |
86 | 4 | notval 145 |
. . . . . . 7
⊢
⊤⊧[(¬ A) =
[A ⇒ ⊥]] |
87 | 66, 86 | a1i 28 |
. . . . . 6
⊢
((ελx:∗
[x:∗
∨ A]), (¬
(ελx:∗ [(¬
x:∗)
∨ A])))⊧[(¬ A) = [A ⇒
⊥]] |
88 | 85, 87 | mpbir 87 |
. . . . 5
⊢
((ελx:∗
[x:∗
∨ A]), (¬
(ελx:∗ [(¬
x:∗)
∨ A])))⊧(¬ A) |
89 | 4, 9 | olc 164 |
. . . . 5
⊢ (¬ A)⊧[A
∨ (¬ A)] |
90 | 88, 89 | syl 16 |
. . . 4
⊢
((ελx:∗
[x:∗
∨ A]), (¬
(ελx:∗ [(¬
x:∗)
∨ A])))⊧[A ∨ (¬ A)] |
91 | 4, 9 | orc 165 |
. . . . 5
⊢ A⊧[A ∨ (¬ A)] |
92 | 91, 7 | adantl 56 |
. . . 4
⊢
((ελx:∗
[x:∗
∨ A]), A)⊧[A
∨ (¬ A)] |
93 | 36, 4, 10, 65, 90, 92 | ecase 163 |
. . 3
⊢
(ελx:∗
[x:∗
∨ A])⊧[A ∨ (¬ A)] |
94 | 93, 11 | adantl 56 |
. 2
⊢ (⊤,
(ελx:∗
[x:∗
∨ A]))⊧[A ∨ (¬ A)] |
95 | 91, 11 | adantl 56 |
. 2
⊢ (⊤, A)⊧[A
∨ (¬ A)] |
96 | 7, 4, 10, 31, 94, 95 | ecase 163 |
1
⊢
⊤⊧[A ∨ (¬ A)] |