Higher-Order Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > HOLE Home > Th. List > dfex2 | GIF version |
Description: Alternative definition of the "there exists" quantifier. (Contributed by Mario Carneiro, 10-Oct-2014.) |
Ref | Expression |
---|---|
dfex2.1 | ⊢ F:(α → ∗) |
Ref | Expression |
---|---|
dfex2 | ⊢ ⊤⊧[(∃F) = (F(εF))] |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dfex2.1 | . . 3 ⊢ F:(α → ∗) | |
2 | wv 64 | . . . . 5 ⊢ x:α:α | |
3 | 1, 2 | ac 197 | . . . 4 ⊢ (Fx:α)⊧(F(εF)) |
4 | wtru 43 | . . . 4 ⊢ ⊤:∗ | |
5 | 3, 4 | adantl 56 | . . 3 ⊢ (⊤, (Fx:α))⊧(F(εF)) |
6 | 1, 5 | exlimdv2 166 | . 2 ⊢ (⊤, (∃F))⊧(F(εF)) |
7 | wat 193 | . . . . 5 ⊢ ε:((α → ∗) → α) | |
8 | 7, 1 | wc 50 | . . . 4 ⊢ (εF):α |
9 | 1, 8 | ax4e 168 | . . 3 ⊢ (F(εF))⊧(∃F) |
10 | 9, 4 | adantl 56 | . 2 ⊢ (⊤, (F(εF)))⊧(∃F) |
11 | 6, 10 | ded 84 | 1 ⊢ ⊤⊧[(∃F) = (F(εF))] |
Colors of variables: type var term |
Syntax hints: tv 1 → ht 2 ∗hb 3 kc 5 = ke 7 ⊤kt 8 [kbr 9 ⊧wffMMJ2 11 wffMMJ2t 12 ∃tex 123 εtat 191 |
This theorem was proved from axioms: ax-syl 15 ax-jca 17 ax-simpl 20 ax-simpr 21 ax-id 24 ax-trud 26 ax-cb1 29 ax-cb2 30 ax-wctl 31 ax-wctr 32 ax-weq 40 ax-refl 42 ax-eqmp 45 ax-ded 46 ax-wct 47 ax-wc 49 ax-ceq 51 ax-wv 63 ax-wl 65 ax-beta 67 ax-distrc 68 ax-leq 69 ax-distrl 70 ax-wov 71 ax-eqtypi 77 ax-eqtypri 80 ax-hbl1 103 ax-17 105 ax-inst 113 ax-wat 192 ax-ac 196 |
This theorem depends on definitions: df-ov 73 df-al 126 df-an 128 df-im 129 df-ex 131 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |