ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  1fpid3 Unicode version

Theorem 1fpid3 1000
Description: The value of the conditional operator for propositions is its third argument if the first and second argument imply the third argument. (Contributed by AV, 4-Apr-2021.)
Hypothesis
Ref Expression
1fpid3.1  |-  ( (
ph  /\  ps )  ->  ch )
Assertion
Ref Expression
1fpid3  |-  (if- (
ph ,  ps ,  ch )  ->  ch )

Proof of Theorem 1fpid3
StepHypRef Expression
1 df-ifp 984 . 2  |-  (if- (
ph ,  ps ,  ch )  <->  ( ( ph  /\ 
ps )  \/  ( -.  ph  /\  ch )
) )
2 1fpid3.1 . . 3  |-  ( (
ph  /\  ps )  ->  ch )
3 simpr 110 . . 3  |-  ( ( -.  ph  /\  ch )  ->  ch )
42, 3jaoi 721 . 2  |-  ( ( ( ph  /\  ps )  \/  ( -.  ph 
/\  ch ) )  ->  ch )
51, 4sylbi 121 1  |-  (if- (
ph ,  ps ,  ch )  ->  ch )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 104    \/ wo 713  if-wif 983
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 714
This theorem depends on definitions:  df-bi 117  df-ifp 984
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator