ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ifpbi23d Unicode version

Theorem ifpbi23d 999
Description: Equivalence deduction for conditional operator for propositions. Convenience theorem for a frequent case. (Contributed by Wolf Lammen, 28-Apr-2024.)
Hypotheses
Ref Expression
ifpbi23d.1  |-  ( ph  ->  ( ch  <->  et )
)
ifpbi23d.2  |-  ( ph  ->  ( th  <->  ze )
)
Assertion
Ref Expression
ifpbi23d  |-  ( ph  ->  (if- ( ps ,  ch ,  th )  <-> if- ( ps ,  et ,  ze ) ) )

Proof of Theorem ifpbi23d
StepHypRef Expression
1 biidd 172 . 2  |-  ( ph  ->  ( ps  <->  ps )
)
2 ifpbi23d.1 . 2  |-  ( ph  ->  ( ch  <->  et )
)
3 ifpbi23d.2 . 2  |-  ( ph  ->  ( th  <->  ze )
)
41, 2, 3ifpbi123d 998 1  |-  ( ph  ->  (if- ( ps ,  ch ,  th )  <-> if- ( ps ,  et ,  ze ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 105  if-wif 983
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 714
This theorem depends on definitions:  df-bi 117  df-ifp 984
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator