ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  adantl3r Unicode version

Theorem adantl3r 504
Description: Deduction adding 1 conjunct to antecedent. (Contributed by Alan Sare, 17-Oct-2017.)
Hypothesis
Ref Expression
adantl3r.1  |-  ( ( ( ( ph  /\  ps )  /\  ch )  /\  th )  ->  ta )
Assertion
Ref Expression
adantl3r  |-  ( ( ( ( ( ph  /\  et )  /\  ps )  /\  ch )  /\  th )  ->  ta )

Proof of Theorem adantl3r
StepHypRef Expression
1 id 19 . . 3  |-  ( (
ph  /\  ps )  ->  ( ph  /\  ps ) )
21adantlr 469 . 2  |-  ( ( ( ph  /\  et )  /\  ps )  -> 
( ph  /\  ps )
)
3 adantl3r.1 . 2  |-  ( ( ( ( ph  /\  ps )  /\  ch )  /\  th )  ->  ta )
42, 3sylanl1 400 1  |-  ( ( ( ( ( ph  /\  et )  /\  ps )  /\  ch )  /\  th )  ->  ta )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107
This theorem is referenced by:  adantl4r  509
  Copyright terms: Public domain W3C validator